| Total No. | of | Questions | :12] | ı |
|-----------|----|-----------|------|---|
|-----------|----|-----------|------|---|

| SEAT No. : |              |    |
|------------|--------------|----|
| [Total     | No. of Pages | :3 |

P3377

## [4959]-115

## **B.E.** (Electronics)

## a: ADVANCED MEASUREMENT SYSTEMS (2008 Course) (Semester - I) (Elective - I)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate books.
- 2) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10, Q11 or Q12.
- 3) Use of electronic pocket calculator is allowed.
- 4) Figures to the right side indicate full marks.
- 5) Assume suitable data if necessry.

## **SECTION-I**

- Q1) a) What is signal integrity? How to ensure signal integrity in case of RF CMOS circuits?
  - b) With the help of block schematic explain arbitrary waveform generator and give its typical application. [8]

OR

- Q2) a) How DPO differs from DSO? Give typical application of DPO. [8]
  - b) What is need of MSO? List important specifications of MSO and give typical application of MSO. [8]
- Q3) a) List and elaborate at least eight parameters to consider while selecting DSO.[8]
  - b) Give typical specifications of Logic Analyzer. Explain how it can be used in fault finding in microcontroller circuits. [10]

OR

| Q4) | a) With res |              | n respect to DSO explain the terms [1                                                                             | [0]                 |
|-----|-------------|--------------|-------------------------------------------------------------------------------------------------------------------|---------------------|
|     |             | i)           | Math functions                                                                                                    |                     |
|     |             | ii)          | FFT                                                                                                               |                     |
|     |             | iii)         | Roll mode                                                                                                         |                     |
|     |             | iv)          | Zoom mode                                                                                                         |                     |
|     |             | v)           | Glitch mode                                                                                                       |                     |
|     | b)          |              | n the help of functional block diagram explain working of RF sweet heterodyne spectrum analyzer?                  | ept<br>[8]          |
| Q5) | a)          |              | at is role of Electronic measurements for Electronic Central Unit [EC<br>n Automotive system?                     | [8]                 |
|     | b)          | Exp          | lain need and use of RF modules and Ethernet in Embedded system                                                   | ns?<br>[ <b>8</b> ] |
|     |             |              | OR                                                                                                                |                     |
| Q6) | a)          | Exp          | lain interfacing techniques for:                                                                                  | [8]                 |
|     |             | i)           | 16X2 Graphic LCD                                                                                                  |                     |
|     |             | ii)          | Alphanumeric Touch Screen                                                                                         |                     |
|     | b)          | Exp          | lain USB and CAN bus standards required in embedded systems?                                                      | [8]                 |
|     |             |              | SECTION-II                                                                                                        |                     |
| Q7) | a)          | _            | lain in detail the EMI/EMC test set up for conducted and radiate ference measurement?                             | ted<br>[8]          |
|     | b)          |              | w a scheme for microwave power measurement using microwarer bridge circuit with barraters and explain the method? | ave<br>[8]          |
|     |             |              | OR                                                                                                                |                     |
| Q8) | a)          | Drav<br>Syst | w and elaborate the fundamental test setup for Advanced Racem.                                                    | dar<br>[8]          |
|     | b)          |              | at are different attenuation measurement techniques used in microwa<br>work? Explain the schemes?                 | ave<br>[8]          |
| [40 | 0501_       | 115          | 2                                                                                                                 |                     |

Explain the concept of virtual instrumentation and its benefits in test and **Q9**) a) measurements? [8] Explain the terms GPIB and SCPI of virtual instrumentation? [8] b) OR Elaborate in detail application of the virtual instrumentation for the distortion *Q10*)a) analyzer. [8] Explain the desired features of software used for virtual instruments?[8] b) *Q11)*a) Discuss the errors encountered in measurement of frequency/time period digitally? How to minimize these errors? [10]b) Explain the data logger in detail with its typical application? [8] OR Explain the concept of ADC. List various types of ADCs with important **Q12)**a) specifications and explain any one in detail? [10]Explain the different automations in digital equipments; namely auto b) polarity, auto ranging and auto zeroing? [8]

888