	[Total No. of Pages: 3	
Total No. of Questions: 12]	SEAT No.:	

[4959]-116

B.E. (Electronics) ADVANCE POWER ELECTRONICS

(2008 Course)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:-

- 1) Answers to the two sections should be written in separate books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.

SECTION - I

- **Q1)** a) Draw a neat circuit diagram and relevant waveforms of a single phase series full converter. [10]
 - b) Why power factor of a controlled converter is never unity even for a resistive load? [8]

OR

- **Q2)** a) Explain how unwanted harmonics are eliminated in a 12 pulse converter? [8]
 - b) Draw a circuit diagram of 3 phase IGBT based PWM rectifier and explain the advantages. [10]
- Q3) a) Draw equivalent circuit diagram of a separately excited DC motor. State the equations that govern the operation of the motor. Explain the field weakening operation.[8]
 - b) Draw a circuit diagram and waveforms of a Cyclo converter to reduce the incoming frequency by a factor of four. [8]

OR

- **Q4)** a) Why V/f method of induction motor speed control is very popular? [8]
 - b) Draw circuit diagram and explain operation of ZCS converter. [8]

Qs)	a)	device selection criteria. [8]
	b)	Explain the third harmonic injection modulation method to improve THD of inverter output. [8]
		OR
Q6)	a)	Why PLL drive improves the speed regulation of a drive? [8]
	b)	Explain microcontroller based DC motor drive. [8]
		SECTION - II
		
Q7)	a)	Compare linear power supply, SMPS and resonant converter power supply. [6]
	b)	Explain an application where Low Drop out regulator is essential. [6]
	c)	Explain the concept of soft switching. [6]
		OR
Q8)	a)	With relevant diagram explain traction motor drive. [8]
	b)	What are parallel redundant power supplies? How load is shared in these supplies? [10]
Q 9)	a)	What is power quality? Explain the different line disturbances and their mitigation techniques. [8]
	b)	Why Bi-Directional converter is essential for a wind energy system? [8]
		OR
Q10) a)	What are the advantages and applications of HVDC system? [8]
	b)	Draw schematic circuit of solar PV operated battery assisted DC motor drive? [8]

Q11)a) What are synchronous rectifiers? Explain in detail.

[8]

b) Explain Fuzzy logic based wind generation system.

[8]

OR

Q12) Write short notes on:

[16]

- a) Z source inverters
- b) Cascaded H bridge multilevel inverters
- c) Energy Audit
- d) Flexible AC transmission

