Total No. of Questions	:12]
-------------------------------	------

P3316 [4959]-37

SEAT No.:		
[Total	No. of Pages	:4

B.E. (Mech.)

DESIGN OF PUMPS, BLOWERS AND COMPRESSORS (2008 Course) (Semester - I) (402044 C) (Elective -I)

Time: 3 Hours [Max. Marks:100]

Instructions to candidates:

- 1) Answer any 3 questions from section I and any 3 questions from section II.
- 2) Answers to the sections must be written in separate Answers books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of electronic pocket calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION -I

- Q1) a) Explain performance characteristics of pumps, compressors, fans & Blowers.
 - b) Explain different Applications of compressors fans & Blowers. [8]

OR

- **Q2)** a) Write equations of Energy Transfer between fluid and rotor, [6]
 - b) Explain the following Terms: [10]
 - i) Flow machines.
 - ii) Turbines.
 - iii) Pumps.
 - iv) Compressible flow machines.
 - v) Incompressible flow machines.

Q3)	a)	Explain the various efficiencies of centrifugal pump.	[8]	
	b)	Explain various types of characteristic curves usually prepared to centrifugal pumps.	for [8]	
		OR		
Q4)	a)	Write short notes on. [1	2]	
		i) Different types of losses in centrifugal pumps.		
		ii) Cavitation in centrifugal pumps.		
	b)	Define specific speed. What is its significance.	[4]	
Q5)	a)	Explain in details design procedure of centrifugal pump. [1	0]	
	b)	Write a short note on "Selection of pumps"	[8]	
		OR		
Q6) a) Explain various forms of cor		Explain various forms of corrosion ocurred in "Hydraulic Machines." [1]	,, .0]	
	b)	Explain in details various Application Areas of centrifugal pump.	[8]	
		SECTION- II		
Q7)	a)	Explain design procedure & selection, optimization of blower.	[8]	
	b)	Write a short note on "Applications of Fans & Blowers"	[8]	
		OR		
Q8)	a)	What are main cause for noise generation? What are methods for reducithe fan noise?	ng [8]	
	b)	How does dust erosion of centrifugal impeller occurs? What is its effect on the performance.	ect [8]	

Q9) a)	State design consideration and imperial relations used to determine various for design parameters in fans & blowers? [8]				
b)	Explain the terms Surging and Stalling				
		OR			
Q10) a)	Write a short note on "Design procedure for selection and optimization of Blowers" [8]				
b)	Write a short note on "Design of Impeller and casing dimensions in aerodynamic design. [8]				
<i>Q11)</i> a)	Explain the terms degree of reaction & Slip factor? [8]				
b)	An Axial compressor stage has the following data. [10]				
	i)	Temperature and Pressure at Entry	300K,1.0bar		
	ii)	Degree of Reaction	50%		
	iii)	Mean Blade ring diameter	36cm		
	, .		18000rpm		
			6cm		
	vi) Air angles at rotor and stator exit 25°				
vii) Axial velocity 180r viii) Work done factor 0.					
					ix) Stage Efficiency 85%
	x)	Mechanical Efficiency	96.7%		
Determine:					
	1)	Air angles at the stator and rotor entry.			
	2) The mass flow rate of air.				
	3) The power required to drive the compressor.				
	4)	The loading coefficient			

- 5) The pressure ratio developed by the stage
 - 6) Mach number at the rotor entry.

OR

Q12)a) Draw the velocity triangles at the entry and exit for the following axial compressor stage:-

- i) $R=\frac{1}{2}$
- ii) $R < \frac{1}{2}$
- iii) $R > \frac{1}{2}$
- b) Air enters the inducer of centrifugal compressor at Po1= 1.02 bar, To1=335 K.The hub and tip diameters of the impeller eye are 10 and 25 cm respectively. If the compressor runs at 7200 rpm and delivers 5.0 kg/s of air. Determine the air angle at the inducer blade entry and the relative Mach number. If IGVs are used to obtain a straight inducer section, determine the air angle at IGVs exit and the new value of the relative mach number.

