Total No. of Questions : 12]

P4520

[4959]-41

B.E. (Thoery) (Mechanical Engineering) QUANTITATIVE AND DECISION MAKING TECHNIQUES (C) (Elective - II) (2008 Pattern)

Time : 3 Hours]

Instructions to the candidates:

1) Solve Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10, Q11 or Q12.

2) Two separate answers books are used for Section - I and Section - II.

3) Figures to right indicate full marks.

4) Use of non programmable calculator is permitted.

5) Assume suitable data, if necessary.

SECTION - I

Q1) a) Explain

- i) Minimax and Maximum Principle
- ii) Two Person Zero Sum Game
- b) Solve following Game problem by Graphical Method. [10]

B's Strategies

		B1	B2	B3	B4
A's Strategies	A1	8	5	-7	9
	A2	-6	6	4	-2

OR

Q2) a) Explain decision making environments and decision making criteria. [6]

b) Find the Game Value of following problem.

B's Strategies

		B1	B2	B3	B4
A's Strategies	A1	-5	16	13	15
	A2	20	-5	60	-70
	A3	-5	9	12	10
	A4	20	2	50	-80

P.T.O.

[10]

[Total No. of Pages : 4

[6]

`

[Max. Marks : 100

2.

SEAT No. :

Q3) Solve Given LPP by Simplex Method.

Maximise Z = 2x1 + 3x2 + 4x3

Subjected to

3x1 + x2 + 4x3 < 6002x1 + 4x2 + 2x3 > 4802x1 + 3x2 + 3x3 = 540 $x1, x2, x3 \ge 0$

OR

- Explain Any one of the following with respect to Linear Programming. [6] **Q4)** a)
 - Types of solution by graphical method with respect to type of i) problem.
 - Sensitivity Analysis ii)
 - Solve Given LPP by Simplex Method. b) [12] Minimize Z = 12x1 + 20x2Subjected to

$$6x1 + 8x2 \ge 100$$

 $7x1 + 12x2 \ge 120$
 $x1, x2 \ge 0$

- Explain Trans Shipment problems. **Q5)** a) [6]
 - Solve following Problem by VAM to minimize transportation cost. Cell b) [10] entries are transportation cost per unit.

	DEMEND							
		D1	D2	D3	D4	D5	Available	
	S1	68	35	4	74	15	18	
	S2	57	88	91	3	8	17	
SOURCE	S3	91	60	75	45	60	19	
	S4	52	53	24	7	82	13	
	S5	51	18	82	13	7	15	
	Required	16	18	20	14	14		
			OR					

2

DEMENID

[4959]-41

[18]

Q6) a) Explain Steps to solve Assignment Problem by Hungarian Method. [8]

	А	В	С	D
Ι	42	35	28	21
II	30	25	20	15
III	30	25	20	15
IV	24	20	16	12

b) Solve following Maximization Assignment Problem.

<u>SECTION - II</u>

Q7) a) Explain with suitable example Monte- Carlo Simulation. [6]

b) A hardware store produces and sells hardware items. Information on the items is given below. [10]

Expected Annual Sales = 8000 units

Ordering Cost = Rs. 180 per order

Holding Cost = 10% of the average inventory value

The item can be purchased according following discounted rates with respect to lot size

Lot Size	Unit Price
1-999	Rs. 22.00
1000-1499	Rs. 20.00
1500-1999	Rs. 19.00
2000 & above	Rs. 18.50
Calculate EOQ and Total Cost.	

OR

Q8) a) Explain Elements of Queuing System.

b) Customer arrive at a bank counter manned by a single cashier according to Poisson distribution with mean arrival rate 6 customer/hour. The cashier attends the customer on first come first serve basis at an average rate of 10 customers/hour with the service time exponential distribution. [10]

Find

- i) The probability of the number of arrivals (0 to 5) during 15 minute interval and 30 minute interval.
- ii) The probability that the queuing system is idle.
- iii) The time a customer should expect to spend in the queue.

[4959]-41

[6]

[8]

- Q9) a) A manufacturing company produces a single product whose selling price is Rs. 16/unit and the variable cost is Rs. 12/unit. If annual fixed cost of the firm are estimated as Rs. 1,20,000. Find the break even point in units, in rupees and as a percentage of capacity if the firm has an estimated capacity of 50,000 units of the product. What is margin of safety? [8]
 - b) Explain Payback Period Method. [4]
 - c) Write difference between Payback Period Method and IRR Method. [4]

OR

- *Q10*) a) Discuss various replacement analysis models. [8]
 - b) A manufacturer have machine A having price 2500/- It's maintaince cost is Rs. 400/- for first five years and then increase by Rs. 100 further per year. Scrap value of machine is negligible. Money value is 10% per year. When the machine should be replaced.

011)	A project ha	s following da	ta with dura	tion in days
<i>L</i> 11	A project na	s ionowing ua	ta witti uura	lion in days

	1-2	1-3	2-4	3-4	3-5	4-5
Optimistic Time in Days	2	9	5	2	6	8
Most likely Time in Days	5	12	14	5	6	17
Pessimistic Time in Days	14	15	17	8	12	20

- a) Draw the network, find expected duration and critical path.
- b) Find out floats for activity 1-3
- c) What is the probability that project will get complete in 30 days. [3]Normal Distribution total area under curve values are as below

	Ζ	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
Ч	$\mathcal{P}(Z)$	0.8159	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452

d) Differentiate between PERT and CPM.

OR

Q12) Write Short note on following.

- a) Types of Floats
- b) Dynamic Programming
- c) Goal Programming

4

[4959]-41

[18]

[6]

[6]

[3]