Total No.	of Questions	:	8
-----------	--------------	---	---

P3528

SEAT No.:	
[Tota]	No. of Pages :3

[4959]-1116

B.E.(Electronics)

OPTICAL AND MICROWAVE COMMUNICATION (2012 Course) (Elective-III) (404211) (Semester-II) (End Sem) Time: 2½ Hours] [Max. Marks: 70 Instructions to the candidates: Answer Q1 or Q2,Q3or Q4, Q5 or Q6, Q 7 or Q8. 2) Figures to the right side indicate full marks. 3) Neat diagrams must be drawn wherever necessary. Assume suitable data if necessary. *Q1*) a) Define fiber splicing. Explain different types of splicing. [7] Explain 2×2 fiber coupler with performance parameters. b) [7] c) State and explain the desirable properties of a source for optical fiber communication links. [6] OR Explain the construction and working of Silicon reach-through Avalanche **Q2**) a) Photodiode. [7] A laboratory demonstration setup has a continuous 12km long optical b) fiber link that has a loss of 1.5dB/km. [7] i) Compute the minimum optical power level in dB that must be launched into fiber to maintain an optical power level of 0.3 W at the receiving end. Calculate the required input power in dB if the fiber has a loss of ii) 2.5dB/km. Explain the applications of Fiber Bragg Gratings for multiplexing and c) demultiplexing function. [6]

		i)	Cutoff wavelength	
		ii)	Guide wavelength	
		iii)	Phase velocity	
		iv)	Wave impedance	
		v)	Dominant mode	
	b)	direct and port	ermine the scattering parameters S_{41} , S_{31} , S_{11} and S_{21} for a 10 ctional coupler having directivity 30dB. Assume that it is lossle VSWR at each port is 1 under matched conditions. Designates 1 input port, port 2 as output port, port 3 as back port and port oupled port.	ess ate
			OR	
Q4)	a)	Explain the construction and working of isolator base rotation principle.		y's [8]
	b)		ermine the S matrix of a 3port circulator with insertion loss of disolation of 20dB and VSWR of 2.	0.5 [6]
	c)	State	e and explain the applications of Magic tee.	[4]
Q5)	a)	_	ain the need of slow wave structure in TWT. Draw schematic struct WT and explain its working.	ure [8]
	b)	Exp	lain the construction and working of cavity magnetron. OR	[8]
Q6)	a)	Wha	at are the limitations of conventional tubes at microwave frequencion	es? [8]
	b)		w schematic structure of reflex klystron. Explain its working with of apple gate diagram.	the [8]

[10]

Q3) a) Explain the following waveguide parameters.

Q7) a) Explain power frequency limitations of microwave BJT. [8]

b) Draw and explain the construction of a microwave BJT. Also explain different types of surface geometries used in it. [8]

OR

Q8) Explain the following microwave solid state devices:

[16]

- a) PIN diode
- b) Tunnel diode
- c) Varactor diode
- d) Gunn diode

