Total	No.	of	Questions	:	8]
-------	-----	----	-----------	---	----

P3628

SEAT No.:			
[Total	No. of Pages	:	3

[4959]-1117

B.E.(Electronics) SOFT COMPUTING

(2012 Pattern)(End Sem) (Semester-II)(404211D)(Elective-III)

Time :2½Hours] [Max. Marks :70

Instructions to the candidates:

- 1) Answer Q 1 or Q 2, Q 3 or Q4,Q5 or Q6,Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data, if necessary.
- Q1) a) State the perceptron learning rule. Also explain its limitation and solution for the same.
 - b) Explain the architecture of Radial Basis Function network and explain the learning mechanism. How are the clusters determined? [6]
 - c) Define the terms for a fuzzy set:

[6]

- i) Normality
- ii) Convexity
- iii) Symmetry
- (92) a) State and explain the popular topologies of neural networks. [8]
 - b) Explain backpropagation algorithm for MLP with a neat signal flow graph. [6]
 - c) Consider two fuzzy sets A and B compute Union, Intersection, Difference for these sets. [6]

$$A = \left\{ \frac{0.8}{2}, \frac{0.4}{3}, \frac{0.6}{4}, \frac{0.1}{5}, \frac{0.3}{6} \right\}$$

$$B = \left\{ \frac{0.3}{2}, \frac{0.8}{3}, \frac{0.6}{4}, \frac{0.8}{5}, \frac{0.2}{6} \right\}$$

Q3) a) Explain the terms:

[8]

- i) Premise(Antecedent)
- ii) Consequence(consequence)
- iii) FAM
- iv) Rule-Base
- b) Enlist the implication rules used in FIS and explain them in brief. [8]

Q4) a) Consider fuzzy relations:

[8]

$$R = \begin{bmatrix} y_1 & y_2 & z_1 & z_2 & z_3 \\ 0.7 & 0.6 \\ 0.8 & 0.3 \end{bmatrix}, S = \begin{bmatrix} y_1 & 0.8 & 0.5 & 0.4 \\ 0.1 & 0.6 & 0.7 \end{bmatrix}$$

Find the relation $T=R \circ S$ using max-min and max-product composition.

b) Explain the Tsukamoto fuzzy model used in FIS with a suitable example.

[8]

- **Q5)** a) What are the advantages of FLC over conventional PID controller? [8]
 - b) Enlist the steps in designing a simple fuzzy control system. [8]
- **Q6)** a) Describe the architecture of Mamdani type FLC with a suitable example.

[8]

b) Enlist the applications where FLC may be preferred over that of conventional PID controller. [8]

Q7) a) Compute the output f for the ANFIS network shown in figure. Assume A_1, A_2, B_1, B_2 as gbell membership functions: [10]

Given: x = 25, y = 30

Premise parameters							
A_1	a = 50	b = 3	c = 0				
A_2	a = 50	b = 3	c = 100				
\mathbf{B}_{1}	a = 50	b = 3	c = 0				
\mathbf{B}_{2}	a = 50	b = 3	c = 100				
Consequent parameters							
f_1	$p_1 = 0.5$	$q_1 = 1$	$r_1 = 0.2$				
f_2	$p_2 = 0.8$	$q_2 = 0.7$	$r_2 = 0.5$				

- b) Explain in details the Hybrid learning in ANFIS.
- **Q8)** a) Explain the Architecture of ANFIS. [10]
 - b) What are the advantages and limitations of ANFIS? [8]

[8]

