Total No. of Questions: 10]	SEAT No.:
P3616	[Total No. of Pages : 2

[4959] - 1101 B.E. (Electronics Engineering) VLSI DESIGN (Theory) (2012 Course) (Semester - I)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:-

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data, if necessary.
- *Q1)* a) Prove that to achieve completely symmetric input output characteristics for a CMOS inverter, the design requires to have $(W/L)_p = 2.5(W/L)_N$ Assume that the gate oxide thickness t_{ox} , and hence the gate oxide capacitance C_{ox} have the same value for both NMOS and PMOS transistors.
 - b) Write short notes on Channel length Modulation. [4]

OR

- **Q2)** a) Draw and Explain I_{ds} V_{ds} characteristics of NMOS. [5]
 - b) Explain noise margin. Give its expressions. [5]
- Q3) a) Write VHDL code for 4 bit up down counter. [5]
 - b) Draw the block diagram and explain the architecture of FPGA. [5]

OR

- Q4) a) Explain data types in VHDL with suitable examples. [5]
 - b) What is metastability? How can it be removed? [5]

Q5)	a)	Draw the schematic of DRAM cell with necessary peripherals and explain read write cycles with the help of timing diagram. [8]	in 3]
	b)	Explain memory organization in details. [8	8]
		OR	
Q6)	a)	Draw and explain the schematic of SRAM cell with necessary peripherals.[8	3]
	b)	Write short notes on i) Refresh circuit ii) Sense amplifier	8]
Q7)	a)	What are the challenges in routing? Explain switchbox routing. [8	8]
	b)	Explain floor planning, its purpose and the rules. OR	8]
Q8)	a)	What is Global Routing. Explain Maze and line probe routing. Algorithm in details.	ns 8]
	b)	Explain Power distribution and power optimization in details. [8	8]
Q9)	a)	What are stuckopen, stuck short faults? Also explain stuck at 1 and stuck at 0 faults with an example.	nd 9]
	b)	What is built in sefl test? Explain BIST for RAM. OR	9]
Q10)	a)	What is Test access port? Explain TAP Controller with the help of star machine.	te 8]
	b)	With reference to BIST, explain the following terms	6]
		• LFSR	
		• Scan chain for flip flop	
	c)	Explain [4	4]
		• Controllability	
		• Observability	