Total No. of Questions: 10]	SEAT No.
P3680	[Tota

[Total No. of Pages : 3

[4959]-1047

B.E. (Mechanical/Sandwich) COMPUTATIONAL FLUID DYNAMICS

(2012 Pattern) (End Sem.) (Semester-II) (402050 A) (Theory)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2; Q3 or Q4; Q5 or Q6; Q7 or Q8; Q9 or Q10.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Use of electronic calculator is allowed.
- 5) Your answer will be valued as a whole.
- 6) Assume suitable data, if necessary.
- **Q1)** a) Write 1D governing equations each in Cartesian coordinates and label each term used for CFD analysis. [5]
 - b) Justify the need of equation of state required to carry out solution of governing equations. [5]

OR

- **Q2)** a) Give examples of three types of grid and explain any two with neat sketch. [5]
 - b) Explain Alternating Direction Implicit method with neat sketch and the numerical method. [5]
- Q3) a) Explain the central difference approach in numerical method. Write three equations citing example.[4]
 - b) Given the function $f(x) = 0.45 x^2$; find the first derivative of f at x = 3; using forward, backward and central differencing of order (Δx) . Use a step size of $\Delta x = 0.1$.

OR

Q4)	is bu The	rizontal pipe having a surface temperature of 67 C and diameter of 25cm ried at a depth of 1.2 meter in the earth location where $k = 1.8$ W/m. °C. earth surface temperature is 15°C. Calculate the heat lost by the pipe per ength. [10]	
Q5)		sidering first order wave equation, explain first order forward, central rence with respect X derive from Euler explicit form. [16]	
	OR		
Q6)	a)	What is it that makes a given calculation go unstable? Explain considering three types of errors and its correlation state the stability condition.[10]	
	b)	What is CFL number? [6]	
Q7)	a)	Justify the need of Semi implicit method for pressure linked equations. [10]	
	b)	Write steps to write algorithm for Semi Implicit method for pressure linked equations. [6]	
	OR		
Q8)	a)	What are the boundary conditions for the pressure correction method? [6]	
	b)	For the pressure correction formula, justify the need of Finite Volume approach. Explain X-momentum equation grid schematic for effective control volume. [10]	
Q9)	a)	Explain the impact of Computational Fluid Dynamics in automobile and internal combustion engine applications. [10]	
	b)	Illustrate the following steps of pre-processing: [8]	
		i) Creation of geometry.	

Mesh generation.

ii)

- iii) Selection of physics & fluid properties.
- vi) Specify boundry conditions.

OR

Q10)a) Explain any two turbulence models;

[10]

- i) RANS.
- ii) $k \varepsilon$ and
- iii) k-ω.
- b) How the graphical plots such as stream-lines; velocity vector plots; and animation are giving a precise picture of the analysis of computational fluid dynamics? [8]

••••