P3681	

SEAT No.:			
[Total	No. of Pages	:	2

[4959]-1049

B.E. (Mechanical)

DESIGN OF PUMPS, BLOWERS & COMPRESSORS					
(2	(2012 Course) (Elective-IV) (End Sem.) (Semester-II) (402050 C)				
Time: 2½ Hours]		½ Hours] [M	lax. Marks : 70		
Instr	ucti	ons to the candidates:			
-	1)	Solve Q1 or Q2; Q3 or Q4; Q5 or Q6; Q7 or Q8; Q9 or Q10.			
	2)	Answers for questions should be written in one single answer sheet only.			
	3)	Figures to the right indicate full marks.			
	<i>4)</i>	Neat figures should be drawn, wherever necessary.			
	5)	Use of electronic pocket calculator is allowed.			
(6)	Assume suitable data, if necessary.			
Q1)	a)	Write a short note on stage "velocity triangles".	[5]		
	b)	Write a short note on "Dimensional parameters".	[5]		
		OR			
Q2)	a)	Explain the different applications of compressors, fans and	d blowers.		
			[5]		
	b)	Explain the Basic Equation of Energy Transfer between flu	id and rotor.		
			[5]		
<i>Q3</i>)	a)	What is slip? Explain the concept of negative slip.	[5]		
	b)	Explain Air vessel in "Reciprocating Pumps".	[5]		
		OR			
Q4)	a)	Explain construction and working of a "Reciprocating pun sketch.	np" with neat [5]		
	b)	Explain "Indicator Diagram" in reciprocating pumps.	[5]		
05)	`	D' 41 ' 64 1' ' CE 1D1 "	[6]		
Q5)	a)	Discuss the various "Applications of Fans and Blowers".	[8]		
	b)	Explain different criterias for "selection of fan s and blowe	ers". [8]		

- **Q6)** a) How does the dust erosion of centrifugal impeller occurs? What is its effect on the performance. [8]
 - b) Explain the function of an "Aerofoil" and discuss characteristic curves of an "Aerofoil". [8]
- Q7) a) Explain different steps involved in designing of "Centrifugal Blowers".[8]
 - b) Write a short note on "Design procedure, selection & optimization of blowers". [8]

OR

- **Q8)** a) Explain performance of "Axial fans" with neat graphs. [8]
 - b) Explain the different "fan stage parameters" with usual notations. [8]
- **Q9)** a) Explain with neat sketch working of centrifugal compressor". [8]
 - b) A centrifugal compressor takes air at 01 bar and 20°C and delivers with total head pressure ratio of 03 bar at the rate of 20 kg/min. The air velocity at the inlet is 60m/s. The isentropic efficiency of the compressor is 70%. Determine: [10]
 - i) The total head temp. of air at the exit of compressor and
 - ii) B.P. required to run the compressor assuming the mechanical efficiency as equal to 95%.

OR

- Q10)a) Explain in details "Performance characteristic curves of An Axial Flow Compressor".[8]
 - b) A centrifugal compressor running at 20,000 rpm takes air at 17°C. Using the following data, find the following parameters. [10]
 - i) Temperature rise of air passing through the compressor.
 - ii) The static pressure ratio.

Take ϕ s(slip factor) = 0.80; Isentropic efficiency (η Isentropic) = 0.70; outer diameter of the Impeller = 50cm. Assume the absolute velocity of Air Entering and leaving the compressor are same.

••••