Total	No.	\mathbf{of}	Questions	:	10]
--------------	-----	---------------	-----------	---	-----

SEAT No.:	
-----------	--

[Total No. of Pages: 3

P3984

[4959]-1038

B.E. (Mechanical)

GAS TURBINE & PROPULSION (Elective - II)

(2012 Course) (Semester - I) (402045A) (End Sem.)

Time: 2½ Hours] [Max. Marks: 70

Instructions to candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Write assumptions made in analysis of compressible fluid flow under steady state conditions and derive continuity equation.[6]
 - b) An aeroplane is flying at a speed of 800 kmph at a high altitude where the atmospheric air temperature is -73°C. Calculate the sonic velocity and its Mach number. Assume R = 287 Nm/kg.K. [4]

OR

- Q2) a) In an oil gas turbine plant, air is compressed from a pressure of 1 bar and temperature of 300K upto a pressure of 5 bar. The oil used has calorific value of 42500 kJ/kg and the combustor efficiency is 95%. Hot gases leaves the combustion chamber at 1000 K. The isentropic efficiency of the turbine & compressor are 90% and 85% respectively. Assuming the mass flow rate of air at 1kg/s, find power output of the plant. [6]
 - b) With the help of neat diagrams, explain the effect of reheat gas turbine cycle on specific work output and thermal efficiency. [4]
- Q3) a) Compare the steam & gas turbine power plants.
 - b) Mention the various advantages & disadvantages of the pulse jet engines.

[4]

[6]

Q4)	a)	In a gas turbine cycle, air at 27°C and 0.98 bar is compressed to 6 bar. The temperature of air is increased to 750°C as it passes through the combustion chamber. The isentropic efficiencies of compressor & turbine are 0.8 and 0.85 respectively. Determine the efficiency of the plant. [6]						
	b)	Define:-						
		i)	Propulsive power,					
		ii)	Propulsive efficiency [4	-]				
Q5)	a)	A single stage impulse turbine has the blade velocity of 300 m/s. T velocity at entry to stage is at 800 m/s having the nozzle angle of 10 rotor blades are symmetrical. Assuming a friction factor of 0.9, fi						
		i)	Work output					
		ii)	Utilisation factor for the stage,					
		iii)	Stagnation temperature drop in turbine,					
		iv)	Stagnation pressure ratio if inlet temperature is 1000 K and the total head isentropic efficiency is equal to utilisation factor. [10]					
	b)	Discuss the effect of nozzle angle on work output in case of impulse turbine. [6]						
			OR					
Q6)	a)		ve the equation of the condition of maximum utilisation factor for city compounded impulse turbine. State clearly the assumptions made [10]	€.				
	b)	Disc	uss the performance curves of gas turbines. [6]				

- Q7) a) An axial flow compressor having 8 stages and 50% reaction design compresses air in the pressure ratio of 4:1. The air enters the compressor at 20°C and flows through it with a constant speed of 90 m/s. The rotating blades of the compressor rotates with a mean speed of 180 m/s. Take isentropic efficiency of the compressor as 82%. Calculate:
 - i) Work done by the machine
 - ii) Blade angles

Take, $\gamma = 1.4 \& \text{Cp} = 1.005 \text{ kJ/kg K}$. [12]

b) Differentiate between turbine blading & axial flow compressor blading.[6]

OR

- **Q8)** a) Explain the following:
 - i) flow coefficient,
 - ii) rotor pressure flow coefficient,
 - iii) rotor enthalpy drop coefficient,
 - iv) diffuser enthalpy drop coefficient [12]
 - b) Explain the design and off design characteristics of an axial flow compressor. [6]
- Q9) a) Discuss how a reactive mixture is formed in a combustion chamber of a gas turbine with all steps involved. [8]
 - b) What are the factors involved in combustion of liquid fuel in the combustor? What are the aspects considered in design of a combustor? [8]

OR

- **Q10)**a) Explain the annular combustion chamber with a neat sketch and also explain which type of method is used in it for flame stabilisation. [8]
 - b) Why cooling of flame tubes is necessary and what are the methods employed? Discuss various methods with the help of neat sketches. [8]

