Fotal No. of Questions : 10]		CEATEN.
,		SEAT No.:
P3523	[4959]-1044	[Total No. of Pag

B.E. (Mechanical)

REFRIGERATIONANDAIR-CONDITIONING EQUIPMENT DESIGN (2012 Course) (Elective - III) (Semester - II) (402049 A)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer three questions out of 6.
- 2) Solve Q1 or 2, Q3 or 4, Q5 or 6,
- 3) All the three questions should be solved in one answer book and attach extra supplements if required.
- 4) Draw Diagrams wherever necessary.
- 5) Use of scientific calculator is allowed.
- 6) Assume suitable data wherever necessary.
- Q1) What is dry ice? Explain with schematic diag. the method of manufacturing dry ice.[10]

OR

- **Q2)** A two cylinder, single acting reciprocating compressor with 5% clearance is used in a R-12 refrigerating cycle to take refrigerating capacity at 7.2 TR at 5°C(3.6 bar) refrigerating temperature and 40°C (9.6 bar) condensing temperature. The compressor index is 1.15. The speed of the piston is limited to 3 m/s. Take L/D =0.8, specific volume as 0.0525 m³/kg. Determine [10]
 - i) Power

ii) Volumetric efficiency

iii) COP

iv) Bore & stroke

v) RPM

Temperature (°C)	Pressure (bar)	$\mathbf{h}_{_{\mathrm{f}}}$	h_{g}
5	3.6	40.69	189.65
40	9.6	74.59	203.2

Q3) a)	Discuss specific types of insulations used for low temperature applications. [5]			
b)	Explain the construction working of pilot-operated solenoid valve.			
	OR			
Q4) a)	Write a short note on defrost method for multiple evaporator systems.[5]			
b)	Sketch and explain Claude cycle using T-s and p-h diagram. [5]			
Q5) a)	Explain the operational considerations of condensers. [4]			
b)	Design R-22 condenser to meet the following conditions; [1]			
	Refrigeration load	30 TR		
	Condensing temperature	37.78°C		
	Evaporating temperature	-1.11°C		
	Water inlet temperature	25.55°C		
	Water flow rate per TR	$0.00757 \text{m}^3/\text{min}$		
	Heat rejection factor	1.013		
	Maximum tube length & diameter	3.6576 m & 2.54 cm		
	Fouling factor	$0.001 \text{ m}^2\text{K/W}$		
	HTC inner & outer side respectively	6000 W/m ² .K & 1500 W/m ² .K		

OR

State the selection basis of condenser.

Q6)	a)	Write a short note on "Pump Circulation System". [8					
	b)	Explain design considerations of evaporator. [8]					
Q7)	7) A test is performed on an induced draft counter flow cooling tower. T following observations are made: [1]						
	Wate	er flow rate: 12.67 kg/s					
	Air f	flow rate: 11.9 kg/s					
	Wate	er entering temperature: 36.3°C					
	Wate	er leaving temperature: 32.1°C					
	Amb	pient air conditions: 43.3°C DBT, 25.6°C WBT					
		e dimensions of the tower are length $L = 3.9624$ m, width $W = 2.616$ m height $H = 2.438$ Determine the following:					
	a)	Value of the performance coefficient.					
	b)	The wetted area of tower if air HTC is 83 W/m ² K.					
	c)	Value of mass transfer coefficient.					
	d)	Tower efficiency.					
		OR					
Q8)	a)	Discuss various types of non-mechanical draft cooling tower. [8]					

[8]

Explain the thermal analysis of cooling tower.

b)

Q9) a) In steam jet refrigeration the dry saturated motive steam is supplied at 6 bar. The amount of motive steam per unit mass of flash vapour is 2 kg/kg. The quality of vapour at the beginning of compression is 0.9. The condensing and flash vapour temperature is 40°C and 5°C respectively. The compression efficiency is 0.78. Obtain the TR of the system for 0.8 kg/s of motive steam and volume of vapour handled by the ejector.[12]

P	T _{sat}	V _f	V _g	$h_{\rm f}$	hfg	hg	Sf	Sfg	Sg
(bar)		(m³/kg)	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kgK)	(kJ/kgK)	(kJ/kgK)
6	158.85	1.1006	.316	670.56	2086.3	2756.8	1.9312	4.8288	6.76
0.07384	40	1.0078	19.52	167.57	2406.7	2574.3	.5725	7.6845	8.2570
0.00872	5	1.0001	147.12	20.98	2489.6	2510.6	0.0761	8.9496	9.0.57

b) What is heat pipe? Explain advantages of heat pipe over other heat transport material. [6]

OR

Q10) Write a short note on:

[18]

- a) Vortex Tube.
- b) Thermoelectric Refrigeration.
- c) Magnetic Refrigeration.

x x x

5