Seat	
No.	

[4956]-2

F.E. (First Sem.) EXAMINATION, 2016 APPLIED SCIENCE—I (Chemistry)

(2008 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Solve Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- (a) Define Atomic Packing Factor (APF). Calculate APF for SC,
 BCC and FCC unit cells of cubic crystal. [7]
 - (b) (i) Draw the following planes in a cubic system: [2]
 - (b) 111.

100

(a)

(ii) Show that radius ratio for ionic crystals with co-ordination No. 3 is 0.155.

P.T.O.

	(c)	At what glancing angle would the first order diffraction from
		(110) plane of NaCl be observed using X-ray of wavelength
		150 pm. The dimension of unit cell is 300 pm. [4]
		Or
2.	(a)	What are the types of symmetries for crystals ? Explain them
		for a cubic crystal. [7]
	(<i>b</i>)	Explain structural features, properties and applications of
		fullerence. [6]
	(c)	Define: [4]
		(i) Unit cell
		(ii) Co-ordination Number
		(iii) Anisotropy
		(iv) Crystallography.
3.	(a)	Explain the strong acid-strong base titration curve with suitable
		indicator. Also give the formulae for calculation of pH before
		and after equivalence point. [7]
	(<i>b</i>)	(i) Calculate equivalent weight of KMnO_4 oxidising reagent
		in acidic medium.
		(Atomic weights : $K = 39$, $Mn = 55$, $O = 16$) [3]
[4956	6]-2	2

		(a) Equivalence Point
		(b) Normality
		(c) Molarity.
	(c)	50 ml of NaCl solution requires 38.6 ml of $M/50~\mathrm{AgNO_3}$ in
		Mohr's method. Calculate amount of chloride ion per litre of
		NaCl solution. [4]
		Or
4.	(a)	What is complexometric titration ? Explain direct titration
		with EDTA. [7]
	(<i>b</i>)	What is Precipitation titration ? Explain Mohr's method for
		determination of Cl ⁻ ions. [6]
	(c)	What are the characteristics of primary standard
		substances ? [4]
5.	(a)	What is glass transition temperature? Explain the factors
		affecting Tg. [6]
	(<i>b</i>)	Give preparation reaction, properties and uses of any two of
		the following: [6]
		(i) Polypropylene
		(ii) HDPE
		(iii) SBR.
[495	66]-2	3 P.T.O.

[3]

Define:

(ii)

(c) Explain free-radical chain reaction mechanism with suitable example. [4]

Or

- 6. (a) What is Vulcanisation of rubber? Give the structural changes and effect on properties of natural rubber on vulcanisation by sulphur.[6]
 - (b) Explain compounding of Plastics. [6]
 - (c) Distinguish between thermosoftening and thermosetting resins. [4]