[Total No. of Printed Pages—2

Seat	
No.	

[4956]-9

F.E. (Semester II) EXAMINATION, 2016 APPLIED SCIENCE-II (Physics) (2008 COURSE)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Answer any three questions (Q. Nos. 1 or 2, Q. Nos. 3, or 4, Q. Nos. 5 or 6)
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.

Constants:

$$h = 6.63 \times 10^{-34} \text{ J.s}$$

 $c = 3 \times 10^8 \text{ m/s}$
 $e = 1.6 \times 10^{-19} \text{ C}$
 $m_e = 9.1 \times 10^{-31} \text{ kg}$

- **1.** (a) Explain group velocity and phase velocity. Derive an expression for group velocity with which a wave group travels. [7]
 - (b) Derive Schrodinger's time independent wave equation. [6]
 - (c) An electron is accelerated through potential difference of 10 kV. Calculate the de-Broglie wavelength and momentum of the electron. [4]

Or

2. (a) Starting from Schrodinger's time independent equation, find energy and wave function of the particle in a rigid box. Show necessary waveforms. [7]

P.T.O.

	(<i>b</i>)	State Heisenberg's uncertainty principle and illustrate it by	
	(-)	electron diffraction at a single slit. [6	_
	(c)	Calculate first two energy eigen values of an electron trapped in an infinite potential well of length 1 Å. [4]	
		in an infinite potential wen of length 1 A.	J
3.	(a)	Draw a neat diagram and explain the construction and working	3
		of He-Ne laser. [7]
	(<i>b</i>)	Distinguish between Type I and Type II superconductors. [6]
	(c)	Explain the preocess of spontaneous emission and stimulated	ŀ
		emission. [4]
		Or	
4.	(a)	What is Superconductivity ? State and explain the	e
	(4)	following:	
		(i) Meissner effect	_
		(ii) Critical magnetic effect	
		(iii) Persistent current.	
	(<i>b</i>)	Explain the operation of Ruby laser with a neat labelled	ŀ
		diagram. [6]
	(c)	Explain any two applications of superconductivity. [4]
5.	(a)	Explain classification of solids into conductors, semiconductors	s
		and insulators on the basis of energy band theory. [6]
	(<i>b</i>)	Explain synthesis of metal nanoparticles by colloidal route. [6]
	(c)	Calculate the number of acceptors to be added to a Germanium	1
		sample to obtain resistivity of 10Ω cm. [4]]
		(Given : $\mu = 1700 \text{ cm}^2 / \text{Volt-sec}$)	
		Or	
6.	(a)	Explain any two properties of Nanoparticles. [6	1
	(b)	What is Hall effect? Derive relation for Hall voltage and	
		Hall coefficient. [6	
	(c)	Discuss any two applications of Nanotechnology. [4]	
[495	56]-9	2	
		-	