Total No. of Questions—12]

[Total No. of Printed Pages—4+1

Seat	
No.	

[4956]-4

F.E. (First Semester) EXAMINATION, 2016 BASIC ELECTRICAL ENGINEERING (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two sections must be written in separate answer-books.
 - (ii) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8, Q. No. 9
 or Q. No. 10, Q. No. 11 or Q. No. 12.
 - (iii) Figures to the right indicate full marks.
 - (iv) Neat diagram must be drawn wherever necessary.
 - (v) Use of non-programmable pocket size scientific calculator is permitted.
 - (vi) Assume suitable additional data, if necessary.

SECTION I

1. (A) With usual notation, prove that:

[8]

$$(\alpha_1 - \alpha_2) = \alpha_1 \alpha_2 (t_2 - t_1)$$

(B) With neat diagram explain construction and working of Lead acid cell. [8]

P.T.O.

2. (A) A resistance element having cross-sectional area of $10\ \text{mm}^2$

		and length of 10 m takes a current of 4 amp from 200 V							
		supply at temperture of 20°C. Find:							
		(i) Resistivity of material and current it will take when temp							
		rises to 60°C . Assume $\alpha_{20} = 0.0003/{\circ}\text{C}$.							
	(B)	Explain the following terms with respect to electrical: [6]							
		(i) Energy							
		(ii) Power.							
3.	(A)	State and explain Thevenin's theorem with example. [8]							
	(B)	Derive formula to convert star connected network into delta							
		connected network. [10]							
		Or							
4.	(A)	State and explain Kirchhoff's Laws. [8]							
	(B)	State and explain Superposition theorem with example. [10]							
5.	(A)	Compare Electric and Magnetic circuits. [8]							
	(B)	Derive the expression for energy stored in a magnetic field							
		in terms of energy stored per unit volume. [8]							
		Or							
6.	(A)	Explain what do you mean by statistically induced emf and							
		dynamically induced emf. [8]							

(B)	A coil of 2000 turns is wound uniformly over a non-magnetic
	ring of mean circumference of 80 cm and cross-sectional
	area of 0.6 sq. cm. If the current through the coil is 2 A,
	calculate: [8]
	(i) Magnetizing force
	(ii) Reluctance
	(iii) Total flux
	(iv) Flux density.
	SECTION II
(A)	Define with respect to alternating quantities with units: [8]
	(i) Amplitude
	(ii) Frequency
	(iii) Time period
	(iv) Cycle.
(B)	The equation of an alternating current is given by $i = 42.42$
	$\sin (628t)$. Calculate its: [8]
	(i) Maximum value
	(ii) Frequency
	(iii) RMS value
	(iv) Average value.
	Or
(A)	Derive an expression for average value of alternating
	current. [8]
(B)	Derive an expression for capacitance of parallel plate
	capacitor. [8]

3

P.T.O.

7.

8.

[4956]-4

9.	(A)	Derive	an	express	ion for	instai	ntaneous	current	and	power
		consumed when voltage V = $V_m \sin \omega t$ is applied to pure inductance								
		alone.	Also	draw	wavefor	m for	the pow	er.		[9]

- (B) A circuit consisting of resistance of 20 Ω and inductance of 0.1 H is connected in series across single phase, 200 V, 50 Hz supply. Calculate : [9]
 - (i) Impedance
 - (ii) Current drawn
 - (iii) Power consumed
 - (iv) Draw phasor diagram.

Or

- 10. (A) If a sinusoidal voltage $V = V_m \sin \omega t$ is applied across R-C series circuit. Derive expression for current and average power consumed by a circuit. Draw waveform of power. [9]
 - (B) Two impedances $Z_1=6+j8~\Omega$ and $Z_2=5+j15~\Omega$ are connected in series across the voltage of 100 V, 50 Hz supply. Calculate :
 - (i) Power factor of the circuit
 - (ii) Total active reactive and apparent power consumed in the circuit.

[4956]-4

- 11. (A) Write a short note on losses taking place in transformer. [6]
 - (B) 25 kVA, 50 Hz single phase transformer has an iron loss and full load copper loss of 350 W and 400 W respectively. Find percentage efficiency at: [10]
 - (i) 50% of full load at unity power factor.
 - (ii) 50% of full load at 0.8 lagging power factor.
 - (iii) 75% of full load at unity power factor.
 - (iv) 75% of full load at 0.8 lagging power factor.

Or

- 12. (A) Compare core type and shell type transformer. [6]
 - (B) A balanced star connected load is supplied by 3-phase, 415 V, 50 Hz supply. Current in phase is 20 A and lags 30° behind phase voltage. Find:
 - (i) Power consumed by load.
 - (ii) Calculate value of load impedance and value of R and X.
 - (iii) Load power factor.