Total No. of Questions : 8]	SEAT No.:
P5109	[Total No. of Pages : 3

[4960]-50

M. E. (Civil) (Structure)

STRUCTURAL RELIABILITY

(2008 Pattern) (Elective - III) (Semester - II)

Time: 4 Hours [Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer book.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- 6) Assume suitable data if necessary.

SECTION - I

- Q1) a) Compare 'Discrete Variables' and 'Continuous Variables' in pretext of their probability laws and simple illustrative examples.[6]
 - b) The cube strength of concrete, X, follows the normal distribution with the mean and the standard deviation values as 25 N/mm² and 5 N/mm² respectively. Calculate the probability of getting a value for strength less than 20 N/mm². [6]
 - c) Derive an expression for probability of failure for the case of load (S) and resistance (R) following the log normal distribution. [5]
- **Q2)** a) Compare critically the conventional methods of structural design with respect to evaluation of safety. [6]
 - b) The test results of the cube strength and cylinder strength of seven batches of concrete laid in footings in a day on a construction site are given below:

 [5]

Sr. No. of Batch	1	2	3	4	5	6	7
Cube Strength	22.07	19.07	24.55	22.39	19.97	18.02	15.75
(N/mm^2)							
Cylinder Strength	14.25	12.02	15.30	14.55	12.25	11.47	10.05
(N/mm^2)							

Determine the sample covariance and correlation coefficient between cube strength and cylinder strength of concrete.

		the definition.	[5]
Q3)	a)	Write short note on application of "Chi-Square Test".	[6]
	b)	Derive the expression for 'Reliability Index' for the case of load (S) a resistance (R) following normal distribution.	and [6]
	c)	Derive the expressions for the reliability of a series system and a para redundant system.	llel [5]
Q4)	a)	Explain the formulation of probability model for wind load along we the various variables involved.	ith [6]
	b)	The axial load carrying capacity of a column, R, in normally distributed with mean valve and standard deviation of R being 100KN and 2001 respectively. The column is subjected to an axial load, S, which is normal distributed with mean valve and standard deviation of S being 7001 and 300KN respectively.	KN ally
	c)	Explain the term "Lifetime Maximum Sustained Load"? Enlist underlying assumptions in its stochastic analysis.	the [5]
		SECTION - II	
Q5)	a)	Write short note on Monte Carlo Method with respect to its object and procedural steps?	ive [6]
	b)	How to generate normal variates from the distribution of Y following normal distribution.	the [6]
	c)	Write a short note on decision models with designed risk level.	[5]
Q6)	a)	Derive the expression for generating log normal variates from distribution of Y following the lognormal distribution with median o (i.e. \hat{Y}) and standard deviation of lognormal Y (i.e. σ_{lny}).	
	b)	Explain Safety Checking Formats used for a design code?	[5]
	c)	Explain how the system reliability concept can be extended for decis making with design risk.	ion [5]

What is meant by 'Structural Reliability'? Explain every important term in

c)

- Q7) a) Derive the expression for partial safety factors specified with respect to the mean values of random variables in the reliability based design of Civil Engineering Structures.
 - b) Short note on the development of reliability based design criteria. [6]
 - c) Explain Reliability based design criteria for RCC Structures. [5]
- **Q8)** a) Explain how to analyze the risk associated with a decision. [6]
 - b) Explain the steps in the development of a reliability based design criteria, to determine the revised partial safety factors for RCC design, as an improvement over the provisions specified in IS: 456. [5]
 - c) Write short note on decision tree analysis. [5]

