Total I	No. of	Questions		8]
---------	--------	-----------	--	----

10	
12018	
Mal	

P4638

[Total No. of Pages: 2

[4960]-1028

M.E. (Civil - Structures)

ADVANCED MECHANICS OF SOLIDS

(2013 Pattern) (Credit system)

Time: 3 Hours]

[Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions from the following.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figures to the right indicates full marks.
- 4) Assume suitable data, if necessary and clearly state.
- 5) Use of cell phone is prohibited in the examination hall.
- 6) Use of electronic pocket calculator is allowed.
- Q1) a) Derive the equations of equilibrium for 3D elasticity problems in Cartesian coordinates and show that shear stresses are complimentary. [6]
 - b) The state of strain at a given point in a body is given by the strain tensor. Find the invariants of the strain tensor. [4]

$$\varepsilon_{ij} = \begin{bmatrix} 0.002 & 0 & -0.004 \\ 0 & -0.006 & 0.001 \\ -0.004 & 0.001 & 0 \end{bmatrix}$$

- Q2) a) What is Airy's stress function? Check whether $\phi = A(2y^2 6x^2y^2)$ represents the Airy's stress functions. [5]
 - b) Derive the expression for stresses σ_x , σ_y and τ_{xy} in cantilever beam subjected to point load at the free end using Airy's stress function. [5]
- Q3) a) Derive equations of equilibrium for 2D elasticity problems in polar coordinates. [5]
 - b) Derive the strain displacement relationships for 2D elasticity problems in polar coordinates. [5]

- Q4) a) A simply supported circular plate of radius a with circular hole at the center of radius b subjected to uniformly distributed moment at the inner edges i.e. at r = b. Determine maximum deflection of the plate. [5]
 - b) Obtain stress components when concentrated load acting on the free surface of a plate. [5]
- **Q5)** a) Explain torsion of thin walled structures by membrane analogy. [4]
 - b) Prove that for the equilateral triangular cross section of side '2a', the torque 'T' is given by approximately, $T = G\theta a \frac{4\sqrt{3}}{5}$. [6]
- Q6) a) Explain difference between Winkler's foundation and Pasternak's foundations.
 - b) Find the equation for deflection, bending moment and shear force for a semi-infinite long beam resting on elastic foundation subjected to force 'P' at left end. [6]
- Q7) a) State the difference between beams curved in plan and beams curved in elevation with suitable example.[5]
 - b) Show that the neutral axis of curve beam in elevation is below the centroidal axis towards the center of curvature. [5]
- Q8) a) A quarter circle beam of radius R curved in plan is fixed at one end and free at other end. It carries a vertical load P at center; determine the deflection at free end.
 - b) Semi-circular beam simply supported on three supports equally spaced carrying uniformly distributed load of intensity *w/m* over entire span. Determine maximum bending moment and twisting moments. [5]

XXXX