Total No. of Questions: 8]	SEAT No.:	
P3788	[Total	No. of Pages : 2

[4960]-1306

		M.E. (Computer Engineering)		
APPLIED ALGORITHMS (2013 Pattern) (Semester - I)				
Instr	uctio	ons to the candidates:		
	1) 2)	Answer any six questions. Neat diagrams must be drawn wherever necessary.		
	<i>3) 4)</i>	Figures to the right indicate full marks. Assume suitable data, if necessary.		
Q 1)	a)	Describe the important characteristics of an Algorithm.	[4]	
	b)	Explain the Best-case, Average-case, and Worst-case analysis of selesorting algorithm.	ection [4]	
Q 2)	a)	Explain Single source shortest path algorithm.	[4]	
	b)	Explain the Quadratic sorting algorithms.	[4]	
Q 3)	a)	Design Prim's Algorithm for minimum spanning tree.	[4]	
	b)	Design Krushkal's Algorithm for minimum spanning tree.	[4]	
0 4)	a)	Which are different approximation schemes?	[41	
Q 4)	a)	Which are different approximation schemes?	[4]	
	b)	Explain vertex cover problem as an example of approximal algorithms.	ation [4]	

Q5) a) Describe the basic properties of Line, Intersection of Line and Line Segment. **[4]** What is convex hall? Explain how convex hall is computed using Jarvis b) march algorithm? [4] **Q6**) a) Explain the standard and slack forms of linear programming. **[4]** Explain algorithm of Knapsack problem with suitable example. [4] b) **Q7**) a) Define Expectation, Moments, and Variance and give significance of small and large variance. [5] What are uncorrelated variables and transform methods? b) [5] **Q8**) a) Explain Bay's rule with example. [5] Explain applications of Binary search algorithms. [5] b)

E0 E0 E0 E0