Total N	lo. of	Questions	:	7]
---------	--------	------------------	---	----

|--|

P3870

[Total No. of Pages : 2

[4960] - 1069

M.E. (Mechanical) (Design Engineering)

ADVANCED MECHANICAL VIBRATIONS

(2013 **Pattern**)

Time: 3 Hours] [Max. Marks:50

Instructions to the candidates:

- 1) Answer any FIVE questions.
- 2) Neat diagrams must be drawn whenever necessary.
- 3) Assume suitable data, if necessary.
- 4) Figures to right indicate full marks.
- 5) Use of non-programmable electronic calculator is allowed.
- **Q1)** Use Lagrange's equation to derive the equations of motion for a double pendulum having lengths of L_1 and L_2 , with masses m_1 and m_2 at the end of each massless link as shown in Fig.1. [10]

Fig. 1. double pendulum

Q2) Find the natural frequencies for bar as shown in Fig.2.

[10]

Q3) Determine the equation of motion of the mass for free vibration as shown in Fig.3 with following details;[10]

m = 10kg, k = 1000N/m, C = 100N.s/m, x(0) = 1.0001m, = 0.10m/s.

Fig.3

- Q4) Derive an expression for dimensionless displacements in un-damped dynamic vibration absorber in terms of the parameters of the system and explain its working. For tuned absorber show:[10]
 - a) The relationship between response speed and mass ratio
 - b) Frequency response curves for main system and absorber
- Q5) a) Explain FFT analyzer with a block diagram. [5]
 - b) Explain practical applications of model analysis in car chassis. [5]
- **Q6**) A random signal has a spectral density that is a constant, $S(f) = 0.004 \text{cm}^2/\text{cps}$ between 20cps and 1200cps and that is zero outside this frequency range. Its mean value is 2.0cm. Determine its rms value and its standard deviation. [10]
- Q7) Write note on (any Four): [10]
 - a) Centrifugal Pendulum.
 - b) Explain experimental modal analysis.
 - c) Holzer Method.
 - d) Duhamels Integral.
 - e) Power Spectral Density Analyser.

