Total No. of Questions—12]

[Total No. of Printed Pages—4

Seat	
No.	

[4957]-211

S.E. (Information Technology) (I Sem.) EXAMINATION, 2016 COMPUTER ORGANIZATION

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10,
 - Q. No. 11 or Q. No. 12 from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- (a) Draw IEEE standard single precision and double precision floating point formats and state various fields in it with their size and significance.
 - (b) Draw flowchart of Booth's algorithm for signed multiplication and multiply the following signed 2's complement numbers. Justify your answer.

Multiplicand = 11011 Multiplier = 00101

P.T.O.

[12]

2. ((a)	Compare Restoring and Non-Restoring division algorithm.
		Perform the division using non-restoring division algorithm.
		Dividend = 23 , Divisor = 05 [10]
((b)	Draw IAS (Von Neumann) Architecture and explain function
		of register in it. [8]
3. ((a)	Draw and explain programmer's model of 8086. [8]
((b)	Explain with examples the following addressing modes
		of 8086 : [8]
		(i) Register addressing mode
		(ii) Immediate addressing mode
		(iii) Register indirect
		(iv) Base index with displacement.
		Or
4. ((a)	Draw timing diagram for memory read cycle of 8086 and list
		operations in each T state. [8]
((b)	Write a short note on minimum mode of 8086. [8]
5. ((a)	Draw and explain single bus organization of the CPU, showing
		all the registers and data paths. [8]
((b)	Write a control sequence for the execution of instruction ADD
		(R3), R1. [8]
[4957]-	211	2

		o.	
6.	(a)	Explain the design of multiplier control unit using Delay Eleme	nt
		method.	8]
	(<i>b</i>)	Compare:	
		(i) Horizontal and Vertical microinstruction representation	n.
		(ii) Hardwired and micro-programmed control.	8]
		SECTION II	
7.	(a)	What is page fault ? Discuss page replacement strategies	in
		detail.	8]
	(<i>b</i>)	Discuss direct mapping technique with respect to mapping function	n,
		address structure, merits and demerits. [1	[0]
		Or	
8.	(a)	What is virtual memory? Explain address translation mechanis	m
		for converting virtual address into physical address with ne	at
		diagram. [1	.0]
	(<i>b</i>)	Write short notes on (any two):	8]
		(i) SDRAM	
		(ii) DVD	
		(iii) EEPROM	
		(iv) RAID	

9.	(a)	List the techniques for performing I/O. Explain interrupt dri	ven
		I/O in detail.	[8]
	(<i>b</i>)	List the features of IC8255 and IC8251.	[8]
		Or	
10.	(a)	Explain working principle of the following:	[8]
		(i) Laser Printer	
		(ii) Scanner.	
	(<i>b</i>)	What is DMA? Explain sigle transfer mode and block trans	sfer
		mode of DMA data transfer.	[8]
11.	(a)	Draw and explain closely coupled and loosely coupled m	nul-
		tiprocessor configurations.	[10]
	(<i>b</i>)	Give comparison between RISC and CISC.	[6]
		Or	
12.	Writ	e short notes on (any four):	[16]
	(i)	Superscalar Architecture	
	(ii)	Instruction pipelining	
	(iii)	CISC	
	(iv)	RISC	
	(v)	UMA	
	(vi)	NUMA	