Total No. of Questions—12]

[Total No. of Printed Pages—4+1

Seat	
No.	

[4957]-215

S.E. (Information Technology) (Second Semester) EXAMINATION, 2016 DATA STRUCTURES AND FILES (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 from Section A and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. 10, Q. 11 or Q. No. 12 from Section B.
 - (ii) Figures to the right side indicate full marks.

SECTION I

- **1.** (a) Write a note on command line arguments. [4]
 - (b) Compare between the following file write functions: [8] fprintf, fwrite, fputs and fputc
 - (c) Compare sequential and index sequential files. [4]

Or

- **2.** (a) Write C implementation of all primitive operations on sequential file. [8]
 - (b) What are the characteristics of good hash function? Explain collision resolutions techniques. [8]
- **3.** (a) Imagine we have two empty stacks of integers s1 and s2. Draw a picture of each stack after the following operations: [8]
 - (1) pushStack (s1, 3)
 - (2) pushStack (s1, 5)
 - (3) pushStack (s1, 7)

P.T.O.

(4) pushStack (s1, 9)						
(5) pushStack (s1, 11)						
(6) pushStack (s1, 13)						
(7) loop not emptyStack (s1)						
(a) popStack)s1, x)						
(b) pushStack (S2, x)						
(8) end loop.						
Write an algorithm to convert an infix expression to prefix						
form. [8]						
Or						
Clearly indicate the contents of stack during evaluation of the						
following postfix expression: [8]						
a b – cd/* e +						
The values are $a = 8$, $b = 6$ $c = 10$, $d = 5$, $e = 7$						
What is stack? Give the data structures for implementation						
of stack using both sequential and linked organization. Give						
applications of stack. [8]						
What would be the contents of queue Q1 and queue Q2						
after the following code is executed and the following data are						
entered: [10]						
(1) Q1 = createQueue						
(2) Q2 = createQueue						
(3) loop (not end of file)						
(a) read number						
(b) enqueue (Q1, number)						

(b)

(a)

(b)

(a)

[4957]-215

4.

5.

- (c) enqueue (Q2, number)
- (d) loop (not empty Q_1)
 - (i) dequeue (Q1, x)
 - (ii) enqueue (Q2, x)
- (e) end loop
- (4) end loop

The data are 5, 7, 12, 4, 0, 4, 6.

- (b) Write an algorithm that reverses the contents of a queue. [8] Or
- 6. (a) Define linear queue. What are the disadvantages of linear queue? Write a pseudo C code for implementation of linear queue using linked organization. [10]
 - (b) Write a pseudo C code for implementation of priority queue. [8]

SECTION II

- 7. (a) Write non-recursive preorder and inorder traversals for binary trees. [8]
 - (b) A binary tree has 10 nodes. The preorder and inorder travesals of the tree are shown below. Draw the tree: [8]

Preorder: J C B A D E F I G H

Inorder: ABCEDFJGIH

Or

- 8. (a) Write recursive algorithm to find smallest node in binary search tree and to count number of leaf nodes. [8]
 - (b) For the following postfix expression draw equivalent tree :[8]

AB + D* EFAD* +/+C+

9. (a) Find the Depth-first-search traversal for the given graph. Refer fig. 1. Write an algorithm for depth-first search traversal.[8]

Fig. 1

(b) Define Graph. Describe various ways in which graphs are represented with the help of example. [8]

Or

10. (a) Find the MST using Prime's algorithm for the given graph. Refer figure 2. [8]

Fig. 2

(b) Write a pseudo code for Kruskal's algorithm. [8] [4957]-215

- 11. (a) For the given data build an AVL tree. Show the balance factor and type of rotation at each step. [10]MP, MBS, MMT, NCP, AI, OOCS, DC, DS, OOP, OOMD
 - (b) Sort the following numbers in ascending order using heap sort algorithm: [8]

17, 25, 8, 0,1, 250, 1008, 65, 48, 101

Or

12. (a) Write short notes on following:

[8]

- (1) OBST
- (2) AVL tree.
- (b) For the data given below build a Huffman tree and find code of each symbol: [10]

Character	Weight	Character	Weight	Character	Weight
A	10	Ι	4	R	7
C	3	K	2	S	5
D	4	\mathbf{M}	3	\mathbf{T}	12
${f E}$	15	N	6	U	5
G	2	O	8		