Seat	
No.	

[4957]-113

S.E. (Mechanical/Auto.) (First Semester) EXAMINATION, 2016 FLUID MECHANICS (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. := (i) Answer any three questions from each Section.
 - (ii) Answers to the two Sections should be written in separate answer books.
 - (iii) Draw diagrams wherever necessary.
 - (iv) Use of scientific calculator is allowed.
 - (v) Assume suitable data wherever necessary.

SECTION I

1. (a) Explain the following terms:

[6]

- (i) Vapour pressure
- (ii) Bulk modulus of elasticity
- (iii) Capillarity.
- (b) Discuss various types of flow.

[8]

(c) State and explain Newton's law of viscosity.

 $\lceil 4 \rceil$

Or

(a) A body with gravity force of 500 N with a flat surface area of 0.2 m² slides down a lubricated inclined plane making a 30° angle with the horizontal. For viscosity of 0.1 kg./ms and body speed of 1 m/s, determine the lubricant film thickness.

P.T.O.

	(<i>b</i>)	Explain:	
		(i) Vorticity [6	3]
		(ii) Velocity potential	
		(iii) Stream function	
	(c)	Define:	[]
		Stream lines, path lines and streak lines.	
3.	(a)	State and prove Pascal's law. [8	3]
	(<i>b</i>)	Explain with neat sketch the method of determining metacentr	ic
		height of floating body. [8	3]
		Or	
4.	(a)	An isosceles triangular plate of base 3 m and altitude 3 m	is
		immersed vertically in an oil of specific gravity 0.8. The base	se
		of the plate coincides with the free surface of oil.	
		Determine:	
		(i) Total pressure on the plate	
		(ii) Center of pressure (\bar{h}) [8]	3]
	(<i>b</i>)	Derive an expression for total pressure and centre of pressur	re
		for inclined plane submersed in liquid and hence derive the	ıe
		expression for center of pressure for vertical plane. [8	}]
5.	(a)	Derive an expression for Euler's equation along stream line. [8	8]
	(<i>b</i>)	A 400 mm \times 200 mm venturimeter is provided in a vertical	al
		pipeline carrying oil of specific gravity 0.9, flow being upward	d.
[4957]]-113	The difference in elevation of the throat section and entrance 2	зе

section of the venturimeter is 200 mm. The differential U-tube mercury manometer shows a gauge deflection of 350 mm. Calculate:

- (i) The discharge of oil and
- (ii) The pressure difference between the entrance section and the throat section.

Take $C_d = 0.98$ and specific gravity of mercury as 13.6. [8]

Or

- **6.** (a) Write a short note on 'Notches.'
 - (b) Discuss various arrangements of Pitot tube. [8]
 - (c) List of forces acting on fluid mass. Explain the significance of each term. [4]

SECTION II

- 7. (a) Derive Hagen-Poiseuille equation for laminar flow in the circular pipes. [12]
 - (b) What are repeating variables? What points are important while selecting repeating variables? [6]

Or

8. (a) Torque T of a propeller depends on density of liquid Δ, viscosity of liquid μ, speed of shaft N r.p.m., linear velocity V, diameter of the propeller shaft D.

Using Buckingham 15-theorem, show that: [10]

$$T \stackrel{\text{\tiny [5]}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}{\stackrel{\text{\tiny [5]}}}}}}}}}}}}}}}}}}}}} \\ The in t$$

(b) Derive expression for velocity distribution for flow in fixed parallel plates. [8]

9.	(a)	Derive an expression for the power transmission through t	he				
		pipes. Find also the condition for maximum transmission of					
		power.	8]				
	(<i>b</i>)	Write a short note on Siphon. Draw HGL and THL for flo)W				
		through siphon.	8]				
		Or					
10.	(a)	A piping system consists of three pipes arranged in series; t	he				
		lengths of the pipes are 1200 m, 750 m and 600 m and diameter	ers				
		750 mm, 600 mm and 450 mm respectively:					
		(i) Transform the system to an equivalent 450 mm diamet	er				
		pipe, and					
		(ii) Determine an equivalent diameter for the pipe, 2550	m				
		long.	6]				
	(<i>b</i>)	Derive Dupits equation.	6]				
	(c)	Explain minor losses occurred in pipe.	4]				
11.	(a)	Discuss boundary layer development over flat plate.	8]				
	(<i>b</i>)	Discuss flow around cylinder and airfoil.	8]				
	Or						
12.	(a)	Write a short note on "Separation of boundary layer and	its				
		control".	8]				
	<i>(b)</i>	Derive an expression for displacement, momentum and ener	gy				
		thickness.	8]				

[4957]-113 4