Total No. of Questions :12]

P2964

[4958] - 205

T.E. (IT)

THEORY OF COMPUTATION

(2008 Course) (Semester - I)

Time : 3 Hours]

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 from the SECTION I.
- 2) Solve Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12 from the SECTION II.
- 3) Answers to the two sections should be written in separate answer books.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Assume suitable data if necessary.

SECTION - I

- Q1) a) Design FA that rear strings made up of letters in the word CHARIOT and accept those string that contain 'CAT' as a substring.[8]
 - b) Define and explain:
 - i) Language
 - ii) Kleene Closure
 - iii) Regular Expression
 - c) Describe English language for following RE : $(1 + 01 + 001)^*$. ($\epsilon + 0 + 00$). [4]

OR

- Q2) a) Design FA to accepts 'L'. Who L = {"String in which a always appear tripled"}
 [8]
 - b) Give RE for following language over = $\{0, 1\}$ [6]
 - i) Language of all strings that begin with "00" and end with "01"
 - ii) Language of all strings not containing substring 000.
 - c) Limitation of Finite State Machine : Explain in detail with an example.[4]

SEAT No. :

[Total No. of Pages :4

[6]

[Max. Marks :100

Ľ

- Q3) a) Design a Mealy machine to check divisibility of binary number by 3.[8]
 - b) Construct DFA for regular expression (00 + 11). $(0 + 1)^*$ [8]

OR

Q4) a) Convert the following NFA into equivalent DFA.

NFA = $(\{p,q,r,s\}, \{0,1\}, \delta, p,\{s\})$ $Q \Sigma$ 0 1 р p,qр r q r r S -S S S

b) Construct NFA for the following regular expression. [8]

- i) $a^{+} b (bb)^{*}$
- ii) $(a + b)^+ bab(a+b)^*$
- Q5) a) Test whether the following grammars are ambiguous or not, if it is ambiguous then remove it.

 $S \rightarrow Ab, A \rightarrow a, B \rightarrow C | b, C \rightarrow D, D \rightarrow E, E \rightarrow a$

b) Convert the following grammar to Chomsky Normal Form (CNF). [6]

 $G=({S}, {a, b}, P, S).$

S->ABA, A->aA, A-> \mathcal{E} , B->bB, B-> \mathcal{E}

c) Write a CFG grammar to generate the language $L = \{a^{2n} b^n | n > 0\}$. [4]

2

[4958] - 205

- *Q6)* a) Show that CFLs are closed under Union, Concatenation and Kleene closure.[6]
 - b) Convert the given grammar CFG to GNF. [6]

S->AA | a, A->SS | b.

c) Construct CFG for language $L = \{a^m b^n c^p \mid p=m+n \text{ and } m, n>1\}$. [4]

SECTION - II

Q7) a)	State and prove pumping lemma theorem for regular language.	[6]
b)	Explain closure properties of regular expression.	[6]

c) Let $G = (\{A0, A1\}, \{a, b\}, P, A0)$

Where $P = \{A0 -->aA1, A1 -->bA1, A1 -->a, A1 -->bA0\}$ Convert given grammar to equivalent Left linear grammar. [6]

OR

b) Let $G = (\{A, A\}, \{a, b\}, P, A)$ where [6]

$$\mathbf{P} = \{\mathbf{A}\text{->}a\mathbf{B}$$

$$\mathbf{B} \rightarrow b\mathbf{B} \mid a \mid b\mathbf{A} \}$$

Construct a FA equivalent to given grammar.

c) Construct a regular grammar G generating the regular set represented by

$$P = a^* b (a^* + b^*)^*$$
 [6]

[4958] - 205

- Q9) a) Compare PDA with FSM and Construct PDA for S->0BB, B->0S |1S| 0.[8]
 b) Design post machines following language: [4]
 L = {aⁿ bⁿ | n>=1}.
 c) Define acceptance by PDA [4]
 i) By final state
 - ii) By empty stack

OR

Q10) a)	Give the different between post machine with PDA. [7]
b)	Obtain a PDA to accept the language $L = \{a^{2n} b^n n \ge 1\}$ by a final state [9]
Q11) a)	Write short notes on: [8]
	i) UTM
	ii) Halting Problem of Turing Machine
b)	Design a Turing machine to compute addition of two unary numbers.[8]
	OR
Q12) a)	Design a Turing machine which replaces occurrence of substring "111" by 101 over input = $\{0, 1\}$. [8]
b)	Write short notes on: [8]
	i) Types of Turing Machine
	ii) Church Turing Hypotheses

ઉજાજી

[4958] - 205