Total	No.	of (Duestion	ns :12
iviai	1 1 U •	$\mathbf{v}_{\mathbf{I}}$	Jucsuoi	110 . 12

SEAT No.	:	

P2810

[4958]-112

[Total No. of Pages :4

T.E. (Mechanical/Automobile) COMPUTER ORIENTED NUMERICAL METHODS (302045) (2008 Course) (Semester - I)

Time: 3 Hours [Max. Marks:100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- 6) Assume Suitable data if necessary.

SECTION - I

Q1) a) Draw Flow chart for 'Newton Raphson' Method.

[8]

b) Use Trapezoidal rule to evaluate take h=k=0.25

[8]

[8]

$$I = \int_{2}^{3} \int_{2}^{3} \frac{dx \, dy}{x^{2} + y^{2}}$$

OR

- **Q2)** a) Draw Flow chart for 'Gauss Quadrature 2 Point Formula'.
 - b) Apply Successive Approximation Method to determine the root of equation $x^3 2x 3 = 0$ to three decimal accuracy [8]
- Q3) a) Draw flowchart for 'Lagrange' s Interpolation' Method. [8]
 - b) Determine y' and y'' at x = 1.2 for following data [8]

X	1.2	1.4	1.6	1.8	2.0
у	0.1	0.5	1.25	2.4	3.9

OR

Q4) a) Explain:

[6]

Interpolation

Inverse Interpolation

Extrapolation

b) Find f(1986) using Newton's Backward Interpolation Method. [10]

X	1951	1961	1971	1981	1991
f(x)	13	17	22	28	41

Q5) a) Explain partial pivoting with example.

[6]

b) Solve following set of equations using Gauss Elimination Method. [12]

$$2X + 4Y - 6Z = -4$$

$$X + 5Y + 3Z = 10$$

$$X + 3Y + 2Z = 5$$

OR

Q6) a) Draw Flow Chart for finding values of unknown variables by Back Substitution in Gauss – Elimination method. [6]

b) Using Gauss Siedel method, solve the following set of simultaneous equations up to two decimal place accuracy. [12]

$$8X + 2Y - 2Z = 8$$

$$X - 8Y + 3Z = -4$$

$$2X + Y + 9Z = 12$$

SECTION - II

Q7) a) Draw flow chart to fit an equation $y = ax^b$ using Least Square Method. [8]

b) Fit a curve of the form $xy^a = b$ through following set of points

X	200	150	100	60	40	10
у	1	1.5	1.8	2.4	4.1	10

[8]

[8]

OR

Q8) a) Fit a straight line through following set of points

X	47	54	26	38	62	20
у	250	300	100	150	500	75

b) The value of u is given by equation, $= 3v^7 - 6v$. Find the absolute error, relative error and percentage error in u at v = 1 if the error in v = 0.05. [8]

Q9) a) Draw flow chart to solve Ordinary differential equations using Modified Euler's method. [8]

b) Given $\frac{dy}{dx} = \sin(y)$ with initial condition as y(0)=1, find y(0.3) with step size of 0.1. Use Runge Kutta 2nd order method. [8]

OR

Q10)a) Draw flow chart to solve simultaneous first order differential equations using RK4 method. [8]

b) Solve the equation $\frac{dy}{dx} = 2xy$. Given the initial condition y(1)=1, find y(1.4) taking step size of 0.2 and accuracy of 0.001 using Modified Euler's formula. [8]

Q11)a) Draw flow chart to solve Parabolic Equation by Explicit Method. [8]

b) Solve the partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -10(x^2 + y^2 + 10)$ Over the square with x=y=0 and x=y=3, with u=0 on the boundary and mesh length 1. [10]

OR

- Q12) a) Draw flow chart to solve Laplace Equation for given no of iterations.[8]
 - b) A simply supported beam of length 'L' 1200mm, is loaded by a uniformly distributed load 'w' of intensity 1kN/m. The governing Exact Differential

Equation is,
$$\frac{d^2y}{dx^2} = \frac{1}{EI} \left[\frac{wLx}{2} - \frac{wx^2}{2} \right]$$
, where 'x' is distance from a

support and 'y' is displacement. Using finite difference method, calculate the deflection at distance 400mm and 800mm from a support. Take $E = 200 \times 10^3 \text{ N/mm}^2$ and $I = 100 \times 10^6 \text{ mm}^4$.

