P2871

[4958]-1060

T.E.(Electronics) DISCRETE TIME SIGNAL PROCESSING (2012 Course) (End Sem) (304210)(Semester-II)

Time :2½Hours]

[Max. Marks : 70

[Total No. of Pages :3

SEAT No. :

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary
- 2) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 3) Assume suitable data if necessary.
- **Q1)** a) An analog signal in represented as $x(t) = 5 \cos(2\pi 2000t) + \cos(2\pi 5000t)$ [6]
 - i) What is the Nyquist rate for this signal?
 - ii) If we sample this signal at a rate of 8KHz, what is the folding frequency?
 - iii) Write the equation for the sampled signal
 - b) Compute the 4 point DFT of the sequence x(n) = {1 2 3 4} using linear transformation method. [4]

OR

Q2) a) Compute the linear convolution of following sequences using Z-transform. [6]

$x_1(n) = \{1 \ 2 \ 1 \ 1\}$ $x_2(n) = \{2 \ 1 \ 2 \ 1\}$

b) Compute the circular convolution of following sequences. [4] $x_1(n) = \{4 \ 3 \ 2 \ 1\}$ $x_2(n) = \{1 \ 2 \ 1 \ 2 \}$

Q3) a) Compute the Z-transform of following sequences. [6]

i) x(n) = n u(n)

ii)
$$x(n) = \left(\frac{1}{2}\right)^n u(n) + (3)^n u(-n-1)$$

P.T.O.

b) H(z) is a cascade combination of $H_1(z)$ & $H_2(z)$ where [4]

$$H_1(z) = \frac{1}{1 - 0.2z^{-1}}$$
 $H_2(z) = \frac{1}{1 - 0.3z^{-1}}$ write the overall system function.

OR

- Q4) a) Compute the IDFT of the following sequence x(k)={7-2-j 1 -2+j}[4]
 b) If the output of the system is given by y(n) = 1.5 y(n-1) 0.5y (n-2) + x (n) + 2x(n-1)
 Find the system function & inpulse response [6]
- Q5) a) Show that the sysmetric FIR filter has linear phase response. [6]
 - b) Write a note on window functions
 - c) Design a bandpass FIR using hamming window for M = 11. [7]

[4]

$$H(e^{jw}) = 1 \quad \pi/4 \le w \le \frac{3\pi}{4}$$

= 0 otherwise.

OR

- *Q6*) a) What is Gibb's Phenomenon? How it is reduced? [6]
 - b) Using frequency sampling method, design FIR filter for N=7 [11]

$$H(e^{jw}) = 1 \qquad 0 \le w \le \frac{\pi}{2}$$
$$= 0 \qquad \frac{\pi}{2} \le w < \pi$$

- **Q7)** a) Realize the following system in direct form I & direct form II [6] y(n) = 0.3 y(n-1)-0.2y(n-2)+x(n)-2x(n-1)+0.2x(n-2)
 - b) What is frequency warping in Bilinear Transformation? How is it overcome? [5]
 - c) Convert the analog filter with system function [6]

$$H(s) = \frac{s+0.2}{(s+0.2)^2 + 9}$$

into a digital filter by means of impulse Invariant technique. Assume $T = 1 \sec$

[4958]-1060

Q8) a)	Design digital butterworth filter that satisfies the following	g specification
	using Bilinear Transformation	[12]

	Sampling frequency = 8 KHz			
	Passband	= 0 - 500 Hz		
	Stopband	= 2– 4 KHz		
	δ_{p}	= 3 dB		
	δ_{s}	= 20 dB		
	Assume	2/T = 1		
b)	Explain direct for	m II structure for realization of LTI system	[5]	
Q9) a)	With the help of block diagram, explain the sampling rate conversion b a non-integer factor [8		on by [8]	
b)	Discuss the desirable features of a digital signal processor			
	OR			

Q10) a) Explain the polyphase structure used for interpolation.	[7]
---	-----

- b) Write note on [9]
 - i) MAC unit
 - ii) Barrel shifter
 - iii) Pipelining

###