P2866

[4958]-1055

T.E. (Electronics Engg.)

ELECTROMAGNETIC AND WAVE PROPAGATION (2012 Pattern) (End Semester) (Semester - I) (304204)

Time : 2½ Hours] Instructions to the candidates:

- 1) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- 5) Use of calculator is allowed.

Q1) a) State and prove Gauss's law.

- b) Two dipoles with momentum $-6a_z nC/m$ and $9a_z nC/m$ are located at point (0,0,2) & (0,0,3) respectively. Find the potential at the origin. [8]
- c) State and derive Biot-Savart's law.

OR

Q2) a) Define and derive Electric potential and potential difference. [6]

- b) An infinite long current filament is placed along Z-axis. The magnetic field intensity at point P (3,4,0) is $10(-0.8\vec{a_x} + 0.6\vec{a_y})$ A/m. find the current through the filament. [8]
- c) State and explain the scalar and vector magnetic potential. [6]
- **Q3)** a) Write Maxwell's equations in point form and integral form. [9]
 - b) In free space $E = 20 \cos(\omega t 50x) a_v$ determine [9]
 - i) J_d ii) H iii) ω

P.T.O.

[6]

[6]

[Max. Marks : 70

SEAT No. :

[Total No. of Pages :2

Q4) a)	State and derive Poynting theorem.	[9]
b)	In non magnetic medium E=4sin $(2\pi 107t-0.8x)az$ V/m. Find the following things.	ng
	i) εr,η	
	ii) The time-average power carried by the wave.	
	iii) The total power crossing 100 cm^2 of plane $2x+y=5$.	[9]
Q5) a)	Define polarization and explain all types of polarization with expression	on. [8]
b)	Explain and derive the plane wave equation in lossless dielectrics.	[8]
OR		
Q6) a)	Explain the reflected wave, Transmitted wave, incident wave.	[6]
b)	In lossless dielectric for which μ =60 π , μ_r =1, and	
	H = -0.1 cos($\omega t - z$)a _{x+} 0.5sin ($\omega t - z$)a _y A/m, calculate ε_r , ω ,and E.[1	0]
Q7) a)	Explain the different types of wave propagation in detail.	[8]
b)	Define following terms:	[8]
	i) Virtual height	
	ii) Maximum Usable Frequency (MUF)	
	iii) Skip distance	
	iv) Critical Frequency	
OR		
Q8) a)	Derive and explain the Friis Transmission equation.	[8]
b)	Explain the characteristics of wireless channel in details.	[8]

x x x ₂

[4958]-1055