1)7(1)	I 1
P 291	

SEAT No.:	

[Total No. of Pages :6

[4958]-1106 T.E. (IT)

SYSTEMS PROGRAMMING (2012 Course) (Semester - II) (314450)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6,Q.7 or Q.8, Q.9 or Q.10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) For the following piece of assembly language code, show the contents of symbol table, literal table and pool table. Assume machines opcodes and size of instruction equal to one.[6]

START 100

A DC 10

MOVER AREG, B

MOVEM BREG = '1'

ADD AREG, = '2'

SUB BREG, = '1'

B LTORG

PRINT C

MOVER CREG, LOOP

C EQU B+10

ORIGIN 10

MOVEM AREG = '1'

END.

b) Explain absolute loader scheme. What are the advantages and disadvantages of this scheme? [4]

Q2) a) For the following assembly language program show MNT, MDT, ALA and the expanded assembly language program.[8]

MACRO

XYZ &A

ST 1, &A

MEND

MACRO

MIT &Z

MACRO

&Z &W

AR 4, &W

XYZ ALL

MEND

ST &Z, ALL

MEND

PROG START

USING *, 15

MIT HELLO

ST 2,3

HELLO YALE

YALE EQU 5

ALL DC F '3'

END.

b) List down the phases of a compiler.

[2]

Q3) a) Give ESD, TXT and RLD cards for both PG1 and PG2 for the following assembly language program.[6]

Rel. Addr.		Source program	
0	PG1	START	
		ENTRY PG1ENT1, PG1ENT2	
		EXTRN PG2ENT1, PG2	
20	ENT1		
30	PG1ENT2		
40		DC A(PG1ENT2)	
44		DC A(PG1ENT1 +15)	
48		DC A(PG1ENT2 - PG1ENT1 -3)	
52		DC A(PG2)	
56		DC A(PG2ENT1 + PG2 - PG1ENT1 +4)	
		END	
0	PG2	START	
		ENTRY PG2ENT1	
		EXTRN PG1ENT1, PG1ENT2	
16	PG2ENT1		
24		DC A(PG1ENT2)	
28		DC A(PG1ENT1)	
32		DC A(PG1ENT2 – PG1ENT1 –3)	
		END	

b) Explain different parameter passing methods used in macroprocessors.[4]

OR

Q4) a) Convert the given Regular expression to its equivalent DFA. [6] $(a.b)^* + (a+c)^*$

b) Give the various data structures used in the lexical analysis phase of compilers. [4]

With a neat diagram explain the classification of parsers. [6] **Q5)** a) Define table -driven predictive parser. For the following grammar b) [8] $S \rightarrow aSbs / bSaS / \epsilon$ Construct table-driven predictive parser and parse the string "ab". Compare bottom up and top down parser. [4] c) OR Consider the following grammar [10] **Q6)** a) $S \rightarrow CC$ $C \rightarrow cC / d$ Construct LALR parser and parse for the string "ccd". Explain YACC file structure. [4] b) Compare LALR and CLR parsers. [4] c) Construct parse tree, syntax tree and annotated parse tree for 3*5+4.[6] **Q7**) a) Explain type checking and its types. **[6]** b) Generate three address code for **[4]** c) while (a<b) do { x=y+z;}

OR

For the following statement, Generate intermediate code in the format:[8] **Q8)** a) Postfix notation i) Quadruple ii) iii) Parse tree iv) Triple Temp = limit*(max-min)+3*limit*(max+min). Translate the following C fragment into the three address code [8] b) begin int add,i,j; int a[10][10],b[10][10]; add=0;i=1; j=1; do begin add=add+a[i,j]*b[i,j];i++; j++; end; while(i<=20 && j<=20); end;

Q9) a)	Dis	cuss code generation issues.	[4]
b)	Dis	cuss with suitable example machine dependent code optimization	า.[8]
c)	Wri	te a short note on activation record.	[4]
		OR	
<i>Q10)</i> a)	Exp	plain following machine independent optimization techniques:	[8]
	i)	Loop invariation.	
	ii)	Common sub-expression elimination.	
	iii)	Dead code elimination.	
	iv)	Strength reduction.	
b)	Cor	mpare machine dependent and independent optimization.	[4]
c)	Exp	plain different storage allocation strategies.	[4]