Total No.	of Questions	:	10]	
-----------	--------------	---	-----	--

SEAT No.:	
-----------	--

[Total No. of Pages: 3

[4958]-1105 **T.E. (IT)**

THEORY OF COMPUTATION

(2012 Pattern) (End Semester) (Semester - I)

Time : 2½ *Hours*] [Max. Marks: 70

Instructions:

P2910

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- Assume suitable data, if necessary. 3)
- Define the following terms **Q1)** a)

[4]

- i) Strings
- Language ii)
- iii) Alphabets
- iv) Kleen closure
- Obtain a DFA equivalent to the NFA. b)

[6]

OR

- Explain the Basic Finite Automata? What are the various application & **Q2)** a) limitation of it? [4]
 - Describe in the simple english the language defined by the following RE b)
 - $(a+b)^*a(a+b)^*$ i)
 - ii) $(01^*0)^*1$
 - iii) $a(a+b)^*bb$ [6] P.T.O.

 $S \rightarrow aA/bB$ $A \rightarrow bA/a$ $B \rightarrow aB/b$ Simplify given grammar b) [6] $S \rightarrow AaA$ $A \rightarrow Sb/bcc/ \in$ $C \rightarrow cc/abb$ OR Define ambiguous Grammar. Show given Grammar is ambiguous or not. **Q4**) a) $S \rightarrow aSbS/bSaS/ \in$ [4] Construct a FA for given regular expression (10)*101(01)* b) [4] c) Define derivation tree with suitable example. [2] Give formal Definition of Push Down automata & applications of PDA.[4] **Q5**) a) Construct a PDA accepting $L = \{ w \subset w^R \mid w \text{ is in } (a/b)^* \text{ and } w^R \text{ is reverse of } w \}$ b) [8] Prove that the Language $L = \{ww \mid w \text{ is in } (0+1)^* \}$ is not a CFL. c) [6] Give the CFG generating the Language accepted by the following PDA.[8] **Q6)** a) $M = (\{q_0,q_1\}, \{0,1\}, \{z_0,x\}, \delta, q_0,z_0,\phi\})$ where δ is given below $\delta(q_0,1,z_0) = \{(q_0,xz_0)\}$ $\delta(q_0, 1, x) = \{(q_0, xx)\}$ $\delta(q_0,0,x) = \{(q_1, x)\}$ $\delta (q_0, \in, z_0) = \{(q_0, \in)\}$ $\delta(q_1,1,x) = \{(q_1, \in)\}$ $\delta(q_1,0,z_0) = \{(q_0, z_0)\}$ Write short note on post machine with example. b) [6] Construct a PDA equivalent to following grammar c) [4] $S \rightarrow aAA$ $A \rightarrow aS/bS/a$ 2 [4958]-1105

Obtain regular expression to the following regular grammar

[4]

Q3) a)

Q7)	a)	Construct a Turing machine to perform mod2 operation on given binar number retain original number as well as store result after number separate by blank.	d
	b)	Differentiate between FA, PDA, and TM. [4	ij
	c)	Write short note on multitape turing machine. [4	ij
		OR	
Q8)	a)	Construct a Turing machine to perform the two's complement of give binary number. [8	
	b)	Write short note on universal Turing machine. [8	}]
Q9)	a)	Write short note on post correspondence problem (PCP). [4	Ŋ
	b)	Explain with example decidable & non decidable language. [6	6]
	c)	Explain with example Turing Reduceability. [6	[(
		OR	
<i>Q10</i>)a)		Show that following decision problems are recursive. [10])]
		i) NFA accepts a word or not	
		ii) CEG G generates the string w or not.	
	b)	Write short note on recursive language & recursively enumerable language with suitable example.	

x x x