Total No.	of Questions	:8]	
-----------	--------------	-----	--

SEAT No.:	
-----------	--

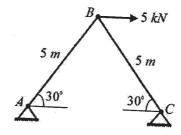
P3063

[5059]-520

[Total No. of Pages: 2

B.E.(Civil Engineering)

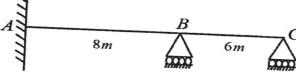
FINITE ELEMENT METHOD IN CIVIL ENGINEERING (2012 Course) (Elective-III)(5)(Semester-II)(End Sem.)(401009E)


Time : 2½ Hours | [Max. Marks : 70]

Instructions to the candidates:

- 1) Answer Q1 or Q2,Q3 or Q4,Q5 or Q6, Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicates full marks.
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume suitable data if necessary.
- *Q1)* a) Write short note on:

[6]


- i) Discretization of structure
- ii) Aspect ratio of element
- b) Determine displacements at loaded joint of truss shown in figure using finite element method. Take A=1000 mm² and E=200 GPa [8]

c) Derive the transformation matrix for two noded frame element having six degrees of freedom.

OR

- **Q2)** a) State the convergence criteria for the choice of the displacement function in FEM.
 - b) Determine rotations at supports B and C of continuous beam ABC if support B sinks by 10mm. Take EI=6000kN.m². Use finite element method.

c) Derive the stiffness matrix for the grid element considering six degrees of freedom. [6]

P.T.O.

Q 3)	Writ	te short note on:	16]	
	a)	Principle of minimum potential energy.		
	b)	Principle of virtual work.		
	c)	CST and LST elements		
	d)	3D Tetrahedron and Hexahedron elements.		
		OR		
Q4)	matr	we connectivity matrix[A], elasticity matrix[D], strain-displacements [B] and stiffness matrix[K] for the four noded rectangular element esian coordinate system using finite element formulation.		
Q5)	Derive shape functions for the following elements using Lagrange's interpolation function.			
	a)	Two noded bar element	[4]	
	b)	Four noded rectangular element	[6]	
	c)	Nine noded rectangular element	[8]	
		OR		
Q6)	Derive the area coordinates for the three noded CST element has Cartesian coordinates node 1 (1,2),node 2 (3,3) and node 3 (2,4).		_	
	b)	Drive shape functions for the eight noded serendipity element in natu	ıral	
		coordinate (ξ, η) system.	[8]	
Q7)	Writ	e short note on:		
	a)	Isoparametric, sub-parametric and super-parametric elements.	[5]	
	b)	Theorems of isoparametric formulations.	[5]	
	c)	Jacobian matrix	[6]	
		OR		

Q8) Derive the Jacobian matrix for the four noded quadrilateral isoparametric element having Cartesian coordinates at node 1(1, 1), node 2 (4, 1), node 3 (1, 2) and node 4 (4,2). [16]

