| Total No. of Questions: 10] | SEAT No.: |  |
|-----------------------------|-----------|--|
|                             |           |  |

P1956 [Total No. of Pages: 5

## [5059]-533 B.E. (Mechanical) DYNAMICS OF MACHINERY (2012 Pattern) (End Semester)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:-

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of electronic calculator is allowed.
- 4) Assume suitable data, if necessary.
- Q1) a) A four cylinder vertical engine has cranks 150 mm long. The cylinders are spaced 200 mm apart. Mass of reciprocating parts of 1<sup>st</sup>, 2<sup>nd</sup> and 4<sup>th</sup> cylinders are 50 kg, 60 kg and 50 kg respectively. Find the reciprocating mass of the 3<sup>rd</sup> cylinder and relative angular positions of the cranks to achieve complete primary balance.
  - b) Determine the expression for natural frequency of the system shown in Fig.1 [4]



- Q2) a) A shock absorber is to be designed so that its overshoot is 10% of the initial displacement when released. Determine the damping factor. Also find the overshoot if the damping factor is reduced to 50%.
  - b) Explain the terms Static Balancing and Dynamic Balancing. [4]
- *Q3)* a) A single cylinder vertical petrol engine of total mass 320 kg is mounted on a steel chassis and causes a vertical static deflection of 2 mm. The reciprocating parts of the engine have a mass of 24 kg and move through a vertical stroke of 150 mm with SHM. A dashpot attached to the system offers a resistance of 490 N at a velocity of 0.3 m/s. Determine:
  - i) the speed of driving shaft at resonance
  - ii) the amplitude of steady state vibrations when the driving shaft of the engine rotates at 480 rpm. [6]
  - b) Define the following terms:

[4]

- i) Damping coefficient
- ii) Critical damping coefficient
- iii) Damping factor
- iv) Logarithmic decrement

OR

- Q4) a) A horizontal spring mass system with coulomb damping has a mass of 5 kg attached to a spring of stiffness 980 N/m. If the coefficient of friction is 0.25, calculate:[6]
  - i) The frequency of free oscillations
  - ii) The number of cycles corresponding to 50% reduction in amplitude if the initial amplitude is 5 cm
  - iii) Time taken to achieve this 50% reduction
  - b) Write a short note on Forced vibrations due to reciprocating unbalance.

[4]

**Q5)** a) Find the natural frequencies of the system shown in Fig. 2. [12]

$$m_1 = 10 \text{ kg}, m_2 = 12 \text{ kg}$$

$$r_1 = 0.10 \text{ m}, r_2 = 0.11 \text{ m}$$

$$k_1 = 40 \times 10^3 \, \text{N/m}$$

$$k_2 = 50 \times 10^3 \text{N/m}$$

$$k_3 = 60 \times 10^3 \text{ N/m}.$$



Fig. 2 (Q. 5 a)

b) Define the following terms:

**[4]** 

- i) Zero frequency
- ii) Node point

OR

**Q6)** a) Find the natural frequencies and mode shapes for the torsional system shown in Fig. 3. Assume  $J_1 = J_0$ ,  $J_2 = 2J_0$  and stiffness for each spring as  $k_t$ . [12]



Fig. 3 (Q. 6a)

| Q7)           | a) | An accelerometer has a suspended mass of 0.01 kg with a damped natural frequency of vibration of 150 Hz. It is mounted on an engine running at 6000 rpm and undergoes an acceleration of 1 g. The instrument records an acceleration of 9.5 m/s <sup>2</sup> . Find the damping constant and the spring stiffness of the accelerometer. [8] |                                                     |     |  |  |
|---------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----|--|--|
|               | b) | te a short note on prediction of vibration failure using time a uency domain analysis of vibration signals.                                                                                                                                                                                                                                 | nd<br>[ <b>8</b> ]                                  |     |  |  |
|               |    |                                                                                                                                                                                                                                                                                                                                             | OR                                                  |     |  |  |
| Q8)           | a) | For finding vibration parameters of a machine running at seismic instrument is used. The natural frequency of the inst Hz and the recorded displacement is 6 mm. Determine the disvelocity and acceleration of the vibrating machine assuming respectively.                                                                                 |                                                     |     |  |  |
|               | b) | Wri                                                                                                                                                                                                                                                                                                                                         | te a short note on :                                | [8] |  |  |
|               |    | i)                                                                                                                                                                                                                                                                                                                                          | FFT analyzer                                        |     |  |  |
|               |    | ii)                                                                                                                                                                                                                                                                                                                                         | Condition monitoring of machines                    |     |  |  |
|               |    |                                                                                                                                                                                                                                                                                                                                             |                                                     |     |  |  |
| <b>Q9)</b> a) |    | Dete                                                                                                                                                                                                                                                                                                                                        | ermine the sound power level of a source generating | [8] |  |  |
|               |    | i)                                                                                                                                                                                                                                                                                                                                          | 0.5 W                                               |     |  |  |
|               |    | ii)                                                                                                                                                                                                                                                                                                                                         | 1.5 W                                               |     |  |  |
|               |    | iii)                                                                                                                                                                                                                                                                                                                                        | 2.2 W                                               |     |  |  |
|               |    | iv)                                                                                                                                                                                                                                                                                                                                         | 3 W of sound power                                  |     |  |  |
|               |    |                                                                                                                                                                                                                                                                                                                                             |                                                     |     |  |  |

b) Explain the concept of torsionally equivalent shaft.

[4]

b) Explain the following terms:

[10]

- i) Wavelength
- ii) Velocity of sound
- iii) Decibel scale
- iv) Sound power level
- v) Sound pressure level

OR

**Q10)** a) Define the following terms:

[6]

- i) Reflection coefficient
- ii) Absorption coefficient
- iii) Transmission coefficient
- b) Draw and explain the main components of human hearing mechanism.[6]
- c) Show that if the sound pressure is doubled, the sound pressure level increases by six decibels. [6]

