Total No. of Questions : 8]

P5065

[5060]-543

M.E.(Civil - Structures) THEORY OF PLATES AND SHELLS (2013 Credit Course) (Semester - II)

Time : 3 Hours]

Instructions to the candidates:

- 1) Attempt any five questions from the following.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figure to the right indicates full marks.
- 4) Assume suitable data, if necessary and clearly state
- 5) Use of cell phone is prohibited in the examination hall.
- 6) Use of electronic pocket calculator is allowed.

Q1) a)	Differentiate thin and thick plates. [2]
b)	Derive Governing differential equation in cartesian co-ordinates with usual notation. [8]
Q2) a)	Derive an expression of flexural rigidity for thin plate. [2]
b)	A rectangular plate of size $a \times b$ with four edges simply supported carries a patch load on (u x v) of intensity q_0/m^2 . Derive an expression for the deflection of the plate using Navier's method. [8]
Q3) a)	Derive an expression for maximum deflection of the rectangular plate with two opposite edges simply supported subjected to uniformly distributed load by Lavy's method. [8]
b)	Explain in brief Reissener-Mindlin Theory. [2]
Q4) a)	Develop from first principle, governing differential equation for a circular plate under axisymmetric loading. [8]
b)	State the boundary condition for the analysis of circular plate. [2]
Q5) a)	State and explain in brief assumption of thin plate with small deflection.[4]
b)	Derive an expression of equilibrium equations for cylindrical shell using bending theory. [6]

[Max. Marks : 50

P.T.O.

SEAT No. :

[Total No. of Pages : 2

- *Q6)* a) Explain membrane theory and derive equilibrium equation for circular cylindrical shell.[6]
 - b) State and explain boundary conditions for circular cylindrical shells. [4]
- Q7) a) Explain in brief application bending theory to pipes and pressure vessels.[5]
 - b) Explain the needs of bending theory for the analysis of cylindrical shells and expression for strains. [5]
- Q8) a) State and explain beam theory of cylindrical shells and principle of Lundgren's beam theory. [5]
 - b) Explain in brief application of beam theory to arch analysis. [5]

