Total No. of Questions: 8]

P4748

SEAT No. :	

[Total No. of Pages: 2

[5060]-550

M.E. (CIVIL) Water Res. & Env. Engg. ENVIRONMENTAL CHEMISTRY & MICROBIOLOGY (2013 Pattern) (Semester - I)

•		•	<i>50</i>
Instr	uctio 1) 2) 3)	ons to the candidates: Attempt any five questions Figures to the right indicate full marks. Use of electronic calculator is allowed.	
Q1)	a)	Explain Radiation and types of radiation.	[4]
	b)	Calculate the PH of a buffer solution containing 0.01 M acetic acid 0.01 M solution accetate. Then Calculate the pH after enough HC added to give a concentration of 0.001M	
Q2)	a)	Explain effects of air pollution on materials. Discuss the mechanism these effects.	oi [6]
	b)	Discuss the sampling and monitoring technique of air pollution.	[4]
Q 3)	a)	Explain Gaussian plume model & its behaviour.	[6]
	b)	Differentiate between absorption & adsorption process.	[4]
Q4)	a)	Convert 0.55 PPm No ₂ to mg/m³ at 290k & 100.00 KPa pressure.	[4]
	b)	Discuss the methods of concentration determination of. air pollutants.	[6]
Q5)	a)	Explain how environment is polluted by natural contaminants & particul matter.	late [4]
	b)	Design a floatation thickener without pressurized recycle to thicken solids in activated - sludge mixed liquor from 0.3-4%	the [6]

Assume that the following conditions apply:

- i) Optimum A/S ratio = 0.008 ML/mg
- ii) Temperature = 20° C
- iii) Air solubility = 18.7 ML/L
- iv) Recycle System pressure = 275 Kpa
- v) Fraction of saturation = 0.5
- vi) Surface loading rate = $8L/m^2$.min
- vii) Sludge flowrate = $400 \text{ m}^3/\text{d}$
- **Q6)** a) Write a short note on filter packing for frickling filters. [4]
 - b) Write a short note on substrate utilization in biological waste treatment. Give significance of F/M ratio. [6]
- **Q7)** a) Explain AAS. with sketch. [5]
 - b) Explain Gas Cromatograph (G.C) [5]
- **Q8)** a) Explain one method for recycling of waste water for. non potable use it's design parameters. & principle. [5]
 - b) Explain air quality models. Which are widely used & its applications.[5]

