Total No. of Questions : 8

SEAT No. :

[Total No. of Pages : 2

[5060] - 555

M.E. (Civil) (Water Resources and Environmental Engg.) HYDROLOGY (2013 Pattern)

Time : 3 Hours]

[Max. Marks : 50

Instructions to the candidates :-

- 1) Answer any FIVE questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.
- 5) Assume Suitable data if necessary.

Q1)	a)	Explain instrumental, empirical, combined energy balance and mass transfer and water balance method to measure evaporation [8]
	b)	Explain Horton's infiltration curve and state the equation for infiltration capacity. [2]
Q2)	a)	Draw a flow chart for mathematical methods in hydrology and explain stochastic hydrology applications [7]
	b)	Explain normal distribution (statistical) [3]
Q3)	a)	What is design flood. How it is calculated for various hydraulic structures[4]
	b)	Explain log-normal distribution method [6]
Q4)	a)	How inflow and outflow relation is useful to determine reservoir surplus water and capacity of reservoir [5]
	b)	Explain the Goodrich method of flood routing [5]
Q5)	a)	Explain step by step design of tube well [5]
	b)	Design a tubewell to be sunk in confined aquifer of 20 m thicknessfully. The yield required is 2400 m ³ /day. Coefficient of permeability of aquifer was found to be 40 m/day. The drawdown in the well was taken to be 4 m.[5]

Q6)	a)	What affects the quality of ground water in India	[6]
	b)	Explain cavity type and slotted type tube well	[4]
Q7)	a)	Eplain any one widely used method of ground water recharge	[4]
	b)	State various methods to conserve ground water and explain any two)[6]
Q8)	a)	Explain sand tank model and transparent model for ground water modeling	3 [6]

b) Explain electric analog model for ground water modeling [4]

