SEAT No. :	
------------	--

P4753 [Total No. of Pages : 2

[5060] - 556

M.E. (Civil) (Weter resources and Environmental Engg) OPEN CHANNEL HYDRAULICS

Water resources and Environmental Engg

(2013 **Pattern**)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithms tables, slide rule, electronics pocket calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) Derive for a trapezoidal channel section of most economical section

 (i) half the top width = length of the sloping side (ii) hydraulic radius = ½

 the depth of flow
 - b) Explain the characteristics of M₁ profile and state one example of its occurrence [6]
- **Q2)** a) Describe constriction in width of channel for upstream flow subcritical [6]
 - b) Starting from basic principles derive an expression for GVF for a wide rectangular channel in the form [4]

$$\frac{dy}{dx} = S_o \frac{1 - \left(\frac{y_n}{y}\right)^{\frac{10}{3}}}{1 - \left(\frac{y_c}{y}\right)^3}$$

Q3)	a)	Write a short note on control of hydraulic jump by jump at an abrudrop	upt [6]
	b)	Write a short note solution of GVF equation using Chow's method	[4]
Q4)	a)	At a certain section M in a rectangular channel of bed width 2 m, deposed of flow is 1.2 m. When the rate of flow is 6 m3/s estimate the distart from M to another section N where the depth is 1.4 m. The bed slope 0.002 and Manning's $n = 0.015$. Take two steps. Sketch and classify profile	ice e is
	b)	Enumerate types of hydraulic jump	[2]
Q5)	a)	Explain any two SVF profiles on bottom racks with sketches	[6]
	b)	Derive dynamic equation of gradual varied unsteady flow	[4]
Q6)	a)	Derive dynamic equation of spatially varied flow with decrease discharge	ing [5]
	b)	Derive equation for celerity of a solitary wave	[5]
Q7)	a)	Define condition of incipient motion? Write in brief of Shields' analysis	[5]
	b)	What is flood routing? Distinguish between reservoir routing and chan routing	nel [5]
Q8)	a)	Define bed load, saltation load, suspended load, total load	[4]
	b)	For the following flood hydrograph through a river reach for which keeps 12 h and $x = 0.20$ find the discharge for first two time steps. At the stoff the inflow flood the outflow discharge is $10 \text{ m}^3/\text{s}$	

Time (h)	0	6	12	18	24	30	36	42	48	54
Inflow m3/s	10	20	50	60	55	45	35	27	20	15

