Total No. of Questions : 8]

P4860

[Total No. of Pages : 2

[Max. Marks :50

SEAT No. :

[5060] - 801 M.E. (Computer Engineering)(Semester - I)

APPLIED ALGORITHMS

(Pattern : 2013)

Time : 3 Hours] Instructions to the candidates:

- 1) Answer any five questions.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable data, if necessary.
- 5) Use of calculator is allowed.

<i>Q1</i>) a)	What are the Important char	acteristics of an Algorithm?	[5]

b) Discuss the Empirical measurements of performance of algorithms.[5]

Q2) a) Define asymptotic notations. Explain their signification in analyzing algorithms. [5]
b) Write about the Best-case, Average-case, and Worst-case analyses of Insertion sorting algorithm. [5]

Q3) a)	Describe all pair shortest path Algorithm in graph.	[5]
b)	Which are O (n log n) sorting algorithms.	[5]

- *Q4*) a) Explain Prim's Algorithm for minimum spanning tree. [5]
 - b) Write about Greedy Kruskal's minimum spanning tree algorithm. [5]
- Q5) a) Write the Red-Black Trees. [5]b) Which are different Approximation scheme? [5]

Q6)	a)	Explain the algorithm of Binary Search.		[5]
	b)		at are the basic properties of Line, Intersection of Line and ment?	Line [5]
Q7)	a)	State	e and Explain Application of Knapsack Problem.	[5]
	b)	Expl	lain simplex method of LPP with example.	[5]
Q8)	a)	Writ	e short note on Epsilon Approximation.	[5]
	b)	Con	sider the LP problem	[5]
		Max	$zimize Z = 15x_1 + 10x_2$	
	Subject to the constraints		ect to the constraints	
		i)	$4x_1 + 6x_2 \le 360$	
		ii)	$3x_1 < = 180$	
		iii)	$5x_2 < = 200$	
			$x_{1,x_{2}} > = 0$	

 $\bigtriangledown \bigtriangledown \bigtriangledown \bigtriangledown \bigtriangledown$