Seat	
No.	

[5057]-216

S.E. (Mechanical, Mechanical Sandwich, Automobile) (Second Semester) EXAMINATION, 2016 ELECTRONICS AND ELECTRICAL ENGINEERING (2012 PATTERN)

Time: Two Hours Maximum Marks: 50

- **N.B.** :— (i) Attempt All questions with internal choice.
 - (ii) Marks are indicated against each question.
- **1.** (a) Explain below mentioned registers in detail : [6]
 - (i) Register A and Register B
 - (ii) Program status word
 - (iii) Stack pointer.
 - (b) Explain SCON register and also explain mode 1 and mode 2 operation of serial communication. [7]

Or

- **2.** (a) Explain instructions given below with suitable example: [6]
 - (i) MOV Rn, #data
 - (ii) MUL AB
 - (iii) SWAP A
 - (b) Explain TMOD register and mode 0 operation detail. [7] P.T.O.

3.	(a)	Compare DC series and DC shunt motor.	3]
	<i>(b)</i>	A 3-phase 50 Hz induction motor has a starting torque which	h
		is 1.25 times full load torque and maximum torque of 2.5 times	s
		of full load. Neglecting stator resistance and rotational losses	s
		and assuming constant rotor resistance, find :	
		(i) The slip at full load	
		(ii) Slip at maximum	
		(iii) Rotor current at start.	3]
		Or	
4.	(a)	A 200 V series motor runs at 500 r.p.m. drawing 25 A. Th	.e
		resistance of the armature is 0.5 ohms and that of field i	S
		0.3 ohms. If the current remains constant, calculate the resistance	e
		necessary to reduce the speed to 250 r.p.m.	3]
	(<i>b</i>)	Explain power flow in an induction motor with the help of	of
		neat sketch.	3]
5.	(a)	Compare Analogue and digital voltmeters.	3]
	(<i>b</i>)	Explain measurement of current, frequency and phase usin	g
		CRO.	3]
		Or	
6.	(a)	Explain the working of digital voltmeter with the help of nea	at
	()	block diagram.	
	(<i>b</i>)	Explain RC phase shift oscillator with the help of neat diagram. [6]	
[505]	7]-216	2	' '
LOUD		=	

- 7. (a) Explain reactive power measurement with the help of one wattmeter method. [6]
 - (b) Two wattmeters are connected to measure power in a load of (4 + j3) ohm per phase in star connected load connected across 400 V, 50 Hz power supply. Determine :
 - (1) Load power factor
 - (2) Reading of each wattmeter
 - (3) Total power delivered to the load.

Or

[7]

- 8. (a) Explain in detail capacitance divider method for measuring high voltage. [6]
 - (b) Explain Maxwell's inductance bridge. [7]