Seat	
No.	

[5057]-214

S.E. (Mechanical/Automobile Engg.) (First Semester) EXAMINATION, 2016

FLUID MECHANICS

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Answer Q. **1** or Q. **2**, Q. **3** or Q. **4**, Q. **5** or Q. **6** and Q. **7** or Q. **8**.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Distinguish between:

[6]

- (i) Simple manometer and differential manometer
- (ii) Real fluids and ideal fluids
- (iii) Specific weight and specific volume.
- (b) Determine the total pressure and centre of pressure on an isosceles triangular plate of base 6 m when it is immersed vertically in an oil of sp. gr 0-8. Take altitude as 4 m and base of the plate coincides with the tree surface of oil. [6]

- **2.** (a) State and prove Pascal's law. [6]
 - (b) The stream function for a two dimensional flow is given by $\psi = 8xy$. Calculate the velocity at the point P(4, 5). Find also velocity potential function ϕ .
- **3.** (a) State Bernoulli's theorem for steady flow of an incompressible fluid. Derive an expression for Bernoulli's theorem from first principle and state assumptions made for such a derivation. [6]
 - (b) Find the discharge of water flowing through a pipe 30 cm diameter placed in an inclined position where a verturimeter is inserted, having a throat diameter 18 cm. The difference of pressure between the main and throat is measured by a liquid of sp gr. 0.7 in an inverted V-tube which gives a reading of 30 cm. The loss of head between the main and throat is 0.2 times the kinetic head of pipe.

Or

- **4.** (a) State the operating principle of pitot tube and derive the equation for measurement of velocity at any point for it. [6]
 - (b) The water is flowing through a taper pipe of length 80 m having diameters 600 mm at the upper end and 400 mm at the lower end at the rate of 50 litres/second. The pipe has a slope of 1 in 30. Find the pressure at lower end if the pressure at the higher level is 20.72 N/cm². [6]

[5057]-214

- 5. (a) A pipe line of length 2000 m is used for power transmission. If 110.3625 KW power is to be transmitted through the pipe in which water having a pressure of 490.5 N/cm² at inlet is flowing. Find the diameter of the pipe and efficiency of transmission if the pressure drop over the length of pipe is 98.1 N/cm². Take f = 0.0065.
 - (b) Define and explain the terms: [6]
 - (i) Hydraulic gradient line
 - (ii) Total energy line.

Or

6. (a) Using Buckingham's π theorem, show that the velocity through a circular orifice is given by:

$$V = \sqrt{29H} \phi \left[\frac{D}{H}, \frac{\mu}{\rho VH} \right]$$

where H is head causing flow, D is diameter of orice, μ is coefficient of viscosity, ρ is mass density and g is gravitational acceleration.

- (b) An old water supply distribution pipe of 250 mm diameter of a city is to be replaced by two parallel pipes of smaller equal diameter having equal lengths and identical friction factor values. Find out new diameter required. [6]
- 7. (a) Find the difference in drag force exerted on a flat plate of size $2 \text{ m} \times 2 \text{ m}$ when the plate is moving at a speed of 4 m/s normal to its plane in : [7]
 - (i) water
 - (ii) air of density 1.24 kg/m 3

coefficient of drag is given as 1.15.

- (b) Define the terms: [6]
 - (i) Lift
 - (ii) Drag
 - (iii) Angle of attack
 - (iv) Camber.

Or

- 8. (a) Define displacement thickness and momentum thickness. Derive an expression for displacement thickness. [6]
 - (b) Find the displacement thickness, the momentum thinkness and energy thinkness for the velocity distribution in the boundary layer given by: [7]

$$\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2.$$