[5058] - 72

[Total No. of Pages :3

T.E. (Electronics Engineering) DATA COMMUNICATION (2008 Course) (Semester - I) (304202)

Time : 3 Hours]

Instructions to the candidates:

- 1) Answer and 3 questions from each Section.
- 2) Answers to the two sections should be written in separate books.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- 5) Neat diagrams must be drawn wherever necessary.
- 6) Use of non programmable electronic pocket calculators is allowed.

SECTION - I

Q1)	a)	With suitable example explain random process. What and time average?	is ensemble average [8]		
	b)	Define autocorrelation. State and explain any three properties of auto correlation. [6]			
	c)	List various standard probability models with their			
		OR			
Q2)	a)	Explain the following terms.	[10]		
		i) Wide sense stationary.			
		ii) Ergodic Process.			
		iii) Auto correlation function.			
		iv) Power spectral density.			
		v) Gaussian Process.			
	b)	Show that impulse function of matched filter is time	•		
		version of input signal.	[8]		
Q3)	a)	What are desirable properties of various line codes?	[8]		
	b)	Explain Intersymbol interference and Eye diagram.	[8]		
		OR			
Q4)	a)	What is the need of bit synchronization in Digital Mu bit synchronizer.	ltiplexing? Explain [8]		
	b)	Sketch PSD for Polar NRZ & Bipolar NRZ formate			
		-	<i>P.T.O.</i>		

[Max. Marks :100]

Consider a (7,4) linear block code whose generator matrix is given **Q5)** a) below [8]

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Find all code vectors

Find parity check matrix of this code.

Find maximum weight of this code.

Explain the various methods of convolution codes. b) [8]

OR

- *Q6*) a) Compare FEC and ARQ systems of error control. Compare different ARQ system on basis of their operation & performance. [8]
 - b) A rate 1/3 convolution encoder has generating vector as $g_1=(1,0,0)$ g2=(1,1,1), g3=(1,0,1)

sketch the encoder configuration

Draw the code tree, state transition and trellis diagram

If encoder message sequence is 10110, determine the output sequence of encoder. [8]

SECTION - II

- **Q7)** a) State and explain all three Shannon's theorems of information theory.[8]
 - b) What is entropy? For discrete memory less source what is the upper bound on entropy. Show that. [8]

OR

Q8)	a)	What is mutual Information? How is the channel capacity related to mut information?	tual [8]
	b)	Explain various channels with their Models.	[8]
Q9)	a)	Explain with block diagram and waveforms DPSK transmitter and receiver.	[8]
	b)	Draw signal space representation for orthogonal and non-orthogonal BFSK.	[8]
[505	58] -	72 2	

|5058| - 72

OR

Q10) a)	Explain with block diagram 16 bit QAM transmitter and receiver mathematically.	
b)	Compare error probabilities for ASK & BFSK.	[8]
011) a)	Write a short note on ALOHA & Slotted ALOHA.	[8]

b) What are the properties of maximum length sequences? Give the graphical representation of auto correlation property of random data of PN sequence. Comment on the graphs. [10]

OR

Q12) a)	Explain in detail the operation of CDMA and compare p	lain in detail the operation of CDMA and compare performance	
	parameters of FDMA, TDMA and CDMA.	[8]	
b)	Explain the working of DSSS transmitter and reciver.	[10]	

 \dot{x} \dot{x} \dot{x} \dot{x}