Total No. of Questions :12]

SEAT No. :

P1681

[Total No. of Pages :3

[5058] - 170

T.E. (IT)

DESIGN AND ANALYSIS OF ALGORITHMS (2008 Course) (314455) (Semester - II)

Time : 3 Hours]

[Max. Marks :100

Instructions to the candidates:

- 1) Draw neat diagrams wherever necessary.
- 2) Assume suitable data, if necessary.
- 3) Figures to the right indicate full marks.

SECTION - I

Q1) a)	Name any three proof techniques. Discuss any one in detail. You may take an example. [8	
b)	What is worst case time complexity of the following: [8	
	$100n^2$, 2^n , 5.6 n^3 , 7 n !, 1000 n , 519, $n^2\log n$, n^4 .	
	OR	
Q2) a)	Arrange the following in the ascending order according to their time complexity: [8]	
	$10n^5$, 3^n , n^3 , $n!$, 1000n, 519, $n^2\log n$, 2^n .	

- b) Write an algorithm to search an element in an array of size n. Calculate complexity of this algorithm. [8]
- **Q3)** a) What is divide and conquer strategy? Write general steps. [8]
 - b) Explain Prim's algorithm. Comment on its complexity. [8]

OR

- *Q4*) a) What is greedy method? Write characteristics of greedy method. **[8]**
 - b) Write Kruskal's algorithm. Comment on its complexity. [8]

Q5) a)	What is Dynamic Programming technique?	[9]			
b)	Explain with suitable example Warshall's algorithm.	[9]			
OR					
Q6) a)	Compare dynamic programming and divide and conquer. What are advantages and disadvantages of both techniques.	the [9]			
b)	Explain knapsack problem. State its recurrence relation.	[9]			
<u>SECTION - II</u>					
Q7) a)	Explain the following terms:	[8]			
	Live nodes, expanding nodes, bounding function and solution space	e.			
b)	Explain 4 queens problem using backtracking.	[8]			
	OR				

Q8) What is backtracking? What kind of problems does it solve? Solve the following knapsack problem using backtracking. [16]

i	p _i	W _i
1	24	15
2	15	10
3	25	18

For n = 3 and m = 20.

Q9) a) Explain the terms:

Branch and Bound , LC, LIFO and Bounding function. How are LIFO and LC techniques different? [9]

b) Differentiate between Backtracking and Branch and Bound. [9]

OR

[5058] - 170

Q10) a)	Explain dynamic reduction technique for Travelling Sales Person.	[9]		
b)	Explain the terms: state space, live node, static trees and dynamic trees.[9			
Q11) a)	What is a deterministic and non-deterministic algorithm? Write a nor deterministic algorithm for searching an element.			
b)	Prove that: A clique problem is NP-complete.	[8]		
OR				
Q12) a)	What is satisfiability problem? Explain DNF and CNF.	[8]		

b) Explain NP-Complete and NP-Hard. Give examples. Are all NP-Complete problems NP-Hard or vice versa? Justify. [8]

ઉદ્યભાષ