Total No. of Questions :12]

SEAT No. :

P1676

[Total No. of Pages :4

[5058] - 165 T.E. (IT) THEORY OF COMPUTATION (2008 Course) (Semester - I)

Time : 3 Hours]

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 from the SECTION I.
- 2) Solve Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12 from the SECTION II.
- 3) Answers to the two sections should be written in separate answer books.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Assume suitable data if necessary.

SECTION - I

<i>Q1</i>) a)	Design FA/FSM accept only those strings which ending with "abb" of input = $\{a, b\}$	over [8]
b)	Define and explain:	[6]
	i) Alphabet and Strings.	
	ii) Formal Language.	
	iii) Regular expression.	
c)	Show that $(0+1)^* = (0^* 1^*)^*$	[4]
	OR	
Q2) a)	Design a finite automata which perform addition of two Binary number	r. [8]
b)	Give RE for following language over = $\{0, 1\}$	[6]

- i) The language of all strings containing exactly two 0's.
- ii) The language of all strings containing at least two 0's.
- iii) The language of all strings not containing the substring 00.
- c) Define Finite State Machine. Explain its properties and limitations. [4]

[Max. Marks :100

Q3) a) Design a Mealy machine to check divisibility of decimal number by 4.[8]

b) Construct DFA for regular expression $(0 + 1)^*$, (00 + 11). [8]

OR

- Q4) a) Construct a NFA and its equivalent DFA for accepting a language defined over input = {0, 1} such that each string has two consecutive zeros followed by 1.
 - b) Construct NFA with epislon move for the following regular expression.[8]

[6]

- i) $(00+1)^*(10)^*$
- ii) $10 + (0 + 11) 0 \times 1$
- **Q5)** a) Consider the following grammar

 $S \rightarrow aB \mid bA$,

A->a | aS | bAA,

 $B \rightarrow b \mid bS \mid aBB$

Derive the string aaabbb using

- i) Leftmost derivation.
- ii) Rightmost derivation.
- b) Convert the following grammar to Chomsky Normal Form (CNF) [6]

S->AACD

A->aAb | ε

 $C\text{->} aC \mid a$

D-> aDa | bDb | ε

c) Construct context free grammar corresponding to regular expression.[4] $(0 + 1) 1^* (1 + (01)^*)$

[5058] - 165

2

- *Q6*) a) Write a CFG grammer to generate the language.
 - i) $L = \{a^{2n} b^n | n > 0\}$
 - ii) Palindrome strings of a's and b's.
 - b) Convert the given grammar CFG to GNF. [6]

 $S \rightarrow ABA | AB | BA | AA | A | B$

 $A \rightarrow aA |a, B \rightarrow bB|b$

c) Define ambiguous grammar. Is the following grammar ambiguous? [4]
S-> aAS|a, A->SbA | SS | ba

SECTION - II

- **Q7)** a) Prove that $L = \{a^n b^n | n \ge 1\}$ is not regular using pumping lemma theorem. [6]
 - b) State and Explain closure properties of regular expression with example. [6]
 - c) Let $G = ({A0, A1}, {a, b}, P, A0)$ [6]

Where $P = \{A0 \rightarrow A1a, A1 \rightarrow A1b, A1 \rightarrow a, A1 \rightarrow A0b\}$

Convert given grammar Left linear grammar to equivalent Right linear grammar.

OR

- *Q8*) a) Explain Chomsky hierarchy with an example. [6]
 - b) Let $G = (\{S, B, A, C\}, \{0, 1\}, P, S)$ where [6]

$$P = \{S \rightarrow B1 | A0 | C0$$

B->B1 | 1
A->A1 | B1 | C0 | 0
C->A0
}

Construct a FA equivalent to given grammar.

c) Construct a regular grammar G generating the regular set represented by P = 0* 1 (0+1)* [6]

[5058] - 165

[6]

- *Q***9)** a) Construct PDA which accepts the language generated by the following CFG for arithmetic operations $S \rightarrow S + S |S*S| 4$ [8] Define post machines. Compare PDA and post machine. [4] b) Write a short note on closure properties of CFLs. c) [4] OR Construct equivalent CFG for given PDA. **Q10)**a) [8] $\mathbf{M} = (\{\mathbf{q}_0, \mathbf{q}_1\}, \{\mathbf{0}, \mathbf{1}\}, \{\mathbf{z}_0, \mathbf{x}\}, \, \boldsymbol{\delta}, \, \mathbf{q}_0, \, \mathbf{z}_0, \, \boldsymbol{\Phi})$ $\delta(q_0, 1, z_0) = (q_0, xz_0)$ $\delta(q_0, 1, x) = (q_0, xx)$ $\delta(q_0,0,\mathbf{x}) = (q_1,\mathbf{x})$ $\delta(q_0, \wedge, z_0) = (q_0, \wedge)$ $\delta(q_1,1,\mathbf{x}) = (q_1,\wedge)$ $\delta(q_1, 0, z_0) = (q_0, z_0)$
 - b) Design PDA to accept the language $L = \{a^n b^{2n} | n > 1\}$ by a final state.[8]

Q11)a) Write short notes on: [8]

- i) Nondeterministic Turing Machine.
- ii) Halting Problem of Turing Machine.
- b) Design a Turing machine to compute 2's complement of given binary number.[8]

OROR

- **Q12)**a) Design a Turing machine to add two unary numbers. [8]
 - b) Write short notes on: [8]
 - i) Limitations of TM.
 - ii) Universal Turing Machine.

ઉદ્યભાષ

[5058] - 165

4