Total No. of Questions: 10]		SEAT No. :
P1688	[5058]-308	[Total No. of Pages : 3

T.E.(Civil)

ENVIRONMENTAL ENGINEERING-I (2012 Course)(Semester-II)(End semester)

Time : 2½ Hours] [Max. Marks : 70

Instructions to the candidates:

- 1) Solve Q1 or Q2,Q3or Q4, Q5 or Q6, Q 7 or Q 8, Q 9 or Q10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables are allowed.
- 5) Assume suitable data if necessary.
- *Q1)* a) What sound pressure level results from combining the following three levels-65 dB, 78 dB and 75 dB. [6]
 - b) Write a note with a neat sketch on: Fabric filter.

Q2) a) Following is the population data for a town. Water supply scheme is to be designed for this town with a design period of 30 years. Find the population at the end of the year 2040 by arithmetical method. [6]

OR

Year	1970	1980	1990	2000	2010
Population	48,000	59,000	67,000	76,000	89,000

- b) Draw a flow diagram of a public water supply scheme and explain each component. [4]
- **Q3)** a) Explain following terms with unit:

[6]

[4]

- i) Weir loading
- ii) Overflow rate
- iii) Flow through velocity
- b) Explain cascade aerator with a neat sketch.

[4]

OR

Q4)	a)	Prove that theoretically, the surface loading(Q/A) and not the depth is a measure of effective removal of particles in a sedimentation tank. [6]			
	b)	Write a procedure for the determination of pH and alkalinity of water.[4]			
Q5)	a)	Acidity introduced by alum dose of 90mg/lit is to be neutralised using lime as CaO. Commercial CaO available is of 85% purity. Work out the quantity of the commercial CaO required in kg/day, if the raw water to be treated is 5 MLD. [8]			
	b)	Draw a neat sketch of a rapid sand gravity filter and show various components. Explain mechanisms of rapid sand gravity filter. [8]			
		OR			
Q6)	a)	A water treatment plant treats 200 m³/hr. of water. Work out the following with respect to flocculator: [8]			
		i) Dimensions of flocculator unit.			
		ii) Power input by paddles to water.			
		iii) Size and number of paddles.			
		Assume $\mu_{\text{water}} = 0.89 \times 10^{-3} \text{ N.s/m}^2$.			
	b)	Explain with a neat sketch diffused double layer theory. [8]			
Q7)	a)	What is break point chlorination? Explain with figure What are it advantages?			
	b)	Explain adsorption technique with sketch for removal of odour and colour. [8]			
		OR			
Q8)	a)	What do you mean by disinfection? Discuss the factors affecting efficiency of disinfection. Enlist at least four disinfectants used in water treatment plant and discuss anyone in detail.			
	b)	Explain zeolite process in detail with neat sketch. [8]			
Q9)	a)	Write a short note on: [9]			
		i) Reverse osmosis			
		ii) Packaged water treatment plant			
	b)	Explain the following layout systems for water distribution: [9]			
		i) Tree or Dead end system			
		ii) Ring or Circular System			

Q10) a) Find required balancing capacity of the reservoir by analytical method for the following data: [9]

Population : 1.0 million.

System of water supply : continuous

Rate of water supply : 270 lit/capita/day.

Break-up of water demand is as follows:

Sr.No.	Time	Liters per capita
1	7 am to 1 pm	100
2	1 pm to 5 pm	45
3	5 pm to 11 pm	95
4	11 pm to 2 am	20
5	2 am to 7 am	10
	TOTAL	270

Water is supplied from the treatment plant at a uniform rate of 11.25 million lit/hour for all 24 hours.

b) What do you mean by rain water harvesting? Write a necessity of rain water harvesting system. Draw a sketch of 'Roof Top Rain Water Harvesting System for a bungalow. [9]

