Total No. o	f Questions	:8]
-------------	-------------	-----

P1	682
	.UU

[Total No. of Pages :4

[5058]-302

T.E. (Civil)

STRUCTURAL ANALYSIS - II

(2012 Course) (Semester - I)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer questions Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Figures to the right side indicate full marks.
- 3) If necessary, assume suitable data & indicate clearly.
- 4) Use of electronic pocket calculator is allowed.
- Q1) a) Analyse the beam by slope deflection method. Draw BMD & SFD. Take EI = 3900 kN-m^2 . The support 'B' sinks by 30 mm. [10]

b) Analyse the continuous beam shown in figure using flexibility method & draw the bending moment diagramme. [10]

Q2) a) Analyse the frame as shown in figure. EI is constant. Use slope deflection method.

b) Analyse the continous beam shown in figure by moment distribution method. Draw BMD & SFD. [10]

Q3) Analyse the beam shown by stiffness matrix method. Draw BMD & elastic curve. EI = constant. [16]

OR

Q5) a) Determine the approximate values of moment, shear & axial forces in member of the frame loaded & supported as shown in figure using cantilever method of analysis.[12]

b) A simply supported beam of length 6m is loaded as shown in figure. Determine the maximum deflection. [6]

OR

[10]

b) The beam is loaded & supported as shown in fig. Determine deflection at nodal points. Take 3 nodes. [8]

Q7) a) Explain the terms:

[8]

- i) Constant strain Triangle.
- ii) Linear strain Triangle.
- iii) Higher order elements.
- iv) Nodes.
- b) Explain shape function for Quadratic rectangular element.

[8]

OR

- **Q8)** a) Explain shape function & state properties of shape function. [8]
 - b) Differentiation between Axisymmetric & Isoparametric elements. [8]

888