Total	Nο	of On	estions	.81
TULAI	TIO.	UI VI	lestions.	•0

10	 41 1	. 1	υ.	O1	Y	uc	311	UI.	10

SEAT No.:	
[Total	No. of Pages :3

P1719

[5058] - 352

T.E. (Electronics Engg.)

DATA COMMUNICATION

(2012 Pattern) (End Sem.) (304202)

Time : 2½ Hours] [Max. Marks : 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figure to the right indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) What are the limitations of DM? Explain with suitable waveforms. [6]
 - b) Draw and explain Layered architecture of OSI model. [7]
 - c) A 1 kHz signal of voice channel is sampled at 4 kHz using 12 bit PCM. Obtain the followings. [6]
 - i) Nyquist rate
 - ii) BW required
 - iii) SNR at PCM output

OR

Q2) a) Compare ARQ and FEC.

[6]

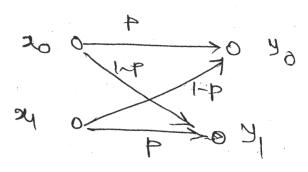
b) Consider a sinewave of frequency f_m and amplitude A_m applied to a DM of step size δ . Show that the slope over load distortion will occure if

$$A_{m} > \frac{\delta}{2\pi f_{m} T_{s}}$$

Where T_s is the sampling period.

[7]

c) Compare RZ unipolar, RZ polar and RZ bipolar data formats.


[6]

Q3) a) Apply Shannan-Fano coding procedure for the following message ensemble. Also determine its efficiency.[8]

x	x_1	x_2	x_3	x_4	x_5	x_6
P	0.4	0.28	0.12	0.08	0.08	0.04

b) Find the rate of information transmission across the channel shown in the figure below for P = 0.8 and P = 0.6. The symbols are generated at the rate of 1000 per second. Also determine channel input information rate.

Given
$$P(x_0) = P(x_1) = \frac{1}{2}$$
. [8]

OR

Q4) a) The voice frequency modulating signal of a PCM system is to be quantized in 16 levels with following probabilities. [8]

$$P_1 = P_2 = P_3 = P_4 = 0.1$$

$$P_5 = P_6 = P_7 = P_8 = 0.05$$

$$P_9 = P_{10} = P_{11} = P_{12} = 0.075$$

$$P_{13} = P_{14} = P_{15} = P_{16} = 0.025$$

Calculate the entropy and information rate, Assume $F_m = 3kH_z$.

b) What steps are involved in Huffman coding procedure? Evaluate the performance of Huffman code over Shannon Fano code for large mesage ensemble with equal probabilities. [8]

Q5) a) Explain QPSK modulation and demodulation.

[8]

b) Derive the expression of error probability of ASK.

[8]

OR

Q6)	a)	What is OFDM? Explain its working and give its application.					
	b)	For BPSK explain.					
		i)	Generation				
		ii)	Reception				
		iii)	Spectrum				
		iv)	BW				
Q 7)	a)	Compare FDMA, TDMA and CDMA.					
	b)	Compare FH-SS and DS-SS.					
	c)	For DS- SS define.					
		i)	Chip sequence				
		ii)	Chip period				
		iii)	Processing gain (spread factor)				
			OR				
Q8)	a)	Write a short note on CSMA.					
	b)	Write a short note on FH - SS					
	c)	Con	npare through puts of pure ALOHA and slotted ALOHA.	[6]			

