SEAT No. :

[Total No. of Pages :3

[5058] - 355

T.E. (Electronics Engg.)

ELECTROMAGNETIC AND WAVE PROPAGATION (304204) (2012 Pattern) (End Semester) (Semester - I)

Time : 2½ Hours]

[Max. Marks :70

[6]

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagram must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- 5) Use of calculator is allowed.

Q1) a) Derive the equation for Electric Field E due to infinite sheet of charge.

- b) Two extensive homogeneous isotropic dielectrics meet on plane z = 0. For z>0, $\mathcal{E}_{r1} = 3$ and for z<0, $\mathcal{E}_{r2} = 2$. A uniform electric field $E_1 = 5a_x - 2a_y + 3a_z KV/m$ exists for $z \ge 0$. Find E_2 for $z \le 0$. [8]
- c) Using concept of curl, obtain point form of ampere's circuit law $\overline{\nabla} \times \overline{H} = \overline{J}$. [6]

OR

- **Q2)** a) Three infinite uniform sheets of charge are located in free space follows $3nC/m^2$ at $z = -4,6 nC/m^2$ at z = 1 and $-8 nC/m^2$ at z = 4. Find E at the point. [8]
 - i) A (2,5,-5)
 - ii) B (4,2,-3)
 - b) State and explain Electric potential and potential difference. [6]
 - c) State and prove Divergence Theorem. [6]

- **Q3)** a) In non magnetic medium $E = 4 \sin (2\pi 10^7 t 0.8 \times) a_z$ V/m. Find the following things. [9]
 - i) \mathcal{E}_{r}, η
 - ii) The time -average power carried by the wave.
 - iii) The total power crossing 100 cm^2 of plane 2 x + y = 5
 - b) Explain and derive the expression for displacement current. [9]

OR

- **Q4)** a) A parallel plat capacitor with plate area 5 cm^2 and plate separation of 3 mm has a voltage 50 sin (10³t) V. applied to its plates calculate the displacement current when $\varepsilon = 2\varepsilon_0$ [9]
 - b) What is pointing vector? What is its significance? Derive the expression for average pointing vector. [9]
- **Q5)** a) Explain and derive the plane wave equation in good conductor. [8]
 - b) An EM wave travels in free space with the electrical field component $E_s = 100e^{j(0.866y + 0.5z)}ax V/m.$ [8]

Determine

- i) ω and λ
- ii) Magnetic field component
- iii) The time average power in the wave

OR

- *Q6)* a) Explain and Derive the expression for and Helmholtz equation.
 (8) Explain and derive the plane wave equation in good conductor.
 (8)
- (Q7) a) Derive the Fundamental equations for free space propagation. [8]
 - b) Explain the following terms: [8]
 - i) MUF
 - ii) Skip Distance
 - iii) D & E Layer
 - iv) Virtual height

2

[5058] - 355

Q8) a) Explain the following terms:

- i) Fading
- ii) Multipath delay spread,
- iii) Coherence Bandwidth
- iv) Coherence Time
- b) Write a short note on following.
 - i) Multi hop propagation
 - ii) Ionospheric abnormalities

[8]

[8]