Time : 2½Hours]

[Total No. of Pages : 4

[5058]-353 T.E.(Electronics.) NETWORK SYNTHESIS (2012 Pattern)(Semester-I)

[Max. Marks : 70

Instructions to the candidates:

- 1) Answer Q1 or Q2,Q3 or Q4,Q5 or Q6,Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume suitable data if necessary.

i)
$$F(s) = \frac{s^2 + 4}{2s^3 + 3s^2 + 6s + 1}$$

ii)
$$F(s) = \frac{(s+2)(s+4)}{(s+1)(s+3)}$$

b) Synthesize the following function using cauer-I and cauer-II form, [6]

$$Z(s) = \frac{2(s+1)(s+3)}{s(s+2)}$$

 c) State the properties of Transfer function and synthesize the following Transfer function. [8]

$$Z_{21}(s) = \frac{s}{s^3 + 3s^2 + 3s + 2}$$

as a 1Ω terminated two port LC ladder network.

OR

- Q2) a) Define all the four transfer functions for a two port network and explain effect of location of poles and zeros on response of the network. [7]
 - b) State and explain the properties of LC impedance function and also indicate which of the following functions are LC, RC,RL, or RLC impedance functions. [7]

i)
$$Z(s) = \frac{s^3 + 2s}{s^4 + 3s^2 + 2}$$

ii)
$$Z(s) = \frac{s^2 + 4s + 3}{s^2 + 6s + 8}$$

iii)
$$Z(s) = \frac{s^4 + 4s^2 + 3}{s^3 + 2s}$$

c) Define constant resistance network? Design a bridge T network terminated in 1Ω to give a voltage transfer ratio [6]

$$G_{12}(s) = \frac{s+2}{s+3}$$

- (Q3) a) Compare Butterworth and Chebyshev Approximation Techniques. [4]
 - b) Determine the transfer function and realize low pass Butterworth approximation filter whose requirements are characterized by,

Pass band edge frequency 0.2 Mrad/sec, maximum loss in pass band2dB, stop band loss at least 60 dB at 6Mrad/sec[8]

c) Normalized third order Low pass filter is shown below in Fig.1 [4]

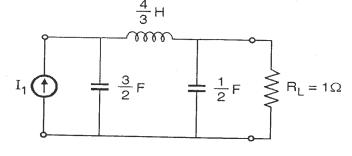


Figure 1

Design the corresponding high pass filter with its cutoff frequency $\omega_c = 10^4 \text{rad/sec}$ and the impedance load of 500Ω

OR

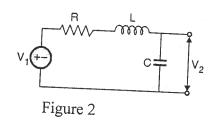
[5058]-353

Q4) a)	Explain frequency and impedance Scaling. [4]
b)	State the properties of Butterworth Approximation. [4]
c)	Determine the transfer function of Chebyshev low pass filter to meet the following specification, [8]
	i) 0.5 dB ripple in the pass band.
	ii) Cut off frequency $w_c = 5x \ 10^5 \text{ rad/sec.}$
	iii) The Magnitude must be down to 30 dB at $w = 1.5 \times 10^6$ rad/sec.
	iv) Load resistance= 600Ω
Q5) a)	Differentiate between Passive and Active filters. [4]
b)	Synthesize 2 nd order active low pass filter to have a pole frequency of 2 kHz and pole Q of 10. Then using RC-CR transformation, realize HPF with same cut off frequency. [6]
c)	What are the advantages and disadvantages of biquad topologies of Active filter? [6]
	OR
Q6) a)	Design 2 nd order Sallen and Key high pass Butterworth filter having cut off frequency of 600 Hz. [4]

- b) Explain the different feedback topologies used in active filter designing.[4]
- c) Synthesize the following high pass filter function using RC-CR transformation. [8]

$$H(s) = \frac{ks^2}{s^2 + s + 25}$$

(Q7) a) Define Sesitivity? Give some of its important properties. [4]


- b) Explain the concept of gain sensitivity? Also explain the various factors affecting the gain sensitivity. [6]
- c) Explain effect of the following op-amp characteristics on the active filter.
 - [8]

- i) Dynamic range
- ii) Input Bias Current.
- iii) Slew rate.
- iv) CMRR

[5058]-353

3

Q8) a) For the series RLC circuit shown in Fig.2, find transfer function V_2/V_1 . Calculate the sensitivities of K, the pole frequency ωp , the factor(Q_p) with respect to R,L and C. Comment on the result obtained. **[6]**

- b) Prove the following sensitivity relationships.
 - i) $S_x^{p^n} = nS_x^p$

ii)
$$S_{\sqrt{x}}^{p} = 2S_{x}^{p}$$

- iii) $S_x^{y+c} = \frac{y}{y+c}S_x^y$
- c) Explain the effect of offset voltage on active filter performance. The input to the inverter shown in Fig.3 is a sine wave of amplitude 5 volt. If the slew rate of the op amp is $1V/\mu$ sec, find the frequency at which the slew rate limiting occurs. [6]

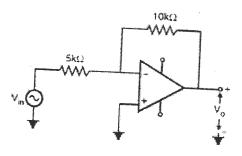


Figure 3

[6]