Total No. of Questions: 10]

SEAT No. :

[Total No. of Pages: 4

P1696

[5058]- 318

T.E. (Mechanical)

MECHATRONICS

(2012 Course) (End Semester) (Semester - II) (302050)

Time: 2½ *Hours*] [*Max. Marks*: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.

Q1) a) From the block diagram in Figure 1, determine the transfer function: X/Y.[8]

Figure 1

b) Write two distinct points of comparison between Potentiometer and Digital Encoder. [2]

Q2) a) Reduce the block diagram in Figure 2 and determine the transfer function: C/R.

Figure 2

- b) List any two reasons to justify the need for a signal conditioner in a mechatronic system. [2]
- **Q3)** a) Draw a suitable block diagram and explain the working of a DAQ system. [6]
 - b) A LVDT is to be selected for measurement of displacement. Discuss, in brief, any four criterions for selection of the said sensor. [4]

OR

- **Q4)** a) For a 4 bit ADC with a $V_{ref} = 10$ volts, find the digital equivalent of $V_{in} = 6$ volts.
 - b) Draw a suitable diagram and explain the working of a strain gauge for force measurement. [4]
- **Q5)** a) Using a suitable example discuss the working of the following in a PLC:
 - i) Latch

ii) Counter

[8]

b) Considering a suitable example explain the working of the SCADA system.

[8]

OR

- Q6) a) A circuit involves four NO type switches, P1, P2, S1 and S2, and a DC motor (M). Draw a ladder diagram such that the said circuit satisfies following objectives:[10]
 - i) When P1 is pushed the circuit shall turn *On* and shall continue to remain *On* until P2 is pushed.
 - ii) When S1 is pushed and S2 is not pushed then Motor is *On* is clockwise direction.
 - iii) When S2 is pushed and S1 is not pushed then Motor is *On* in anticlockwise direction.
 - iv) When P2 is pushed the circuit turns Off.
 - b) Draw a suitable block diagram and explain the architecture of a PLC.[6]

Q7) a)
$$\frac{C(s)}{R(s)} = \frac{0.5s + 2}{s^2 + 0.5s + 2}$$

From the transfer function, of a second order system, presented by Eq. (1), determine: [10]

- i) Location of Pole
- ii) Location of Zero
- iii) Damping Factor ζ

Also, for the transfer function in Eq. (1), comment on:

- i) Absolute stability of the system.
- ii) Unit step response of the system.
- b) Discuss the advantages and the dis-advantages of the frequency domain analysis in comparison to the domain analysis. [6]

OR

- **Q8)** a) Draw suitable sketch and explain "Time Domain Specifications and Analysis". [10]
 - b) Determine the approximate Rise Time, 2% Settling Time and % Overshoot of a second-order system driven using a unit step input. Assume the system to have a damping factor = 0.75 and natural frequency = 5 rad/sec. [6]
- **Q9)** a) The equation of error is $e = 0.5t + 0.03t^2$. With $K_p = 5$, $K_D = 0.5$ and p(0) = 50 %, sketch the graph of the controller output vs time for a Proportional plus Derivative controller (in series form) from t = 0 to t = 2 sec. [10]
 - b) Write the equation for the control signal for Integral action. Also, discuss the advantages as well as the disadvantages of adding Integral action to the Proportional action. [8]

OR

- **Q10)** a) Derive the transfer function of the Proportional Integral Derivative (PID) controller in parallel form. Also, discuss, in detail, the advantages and disadvantages of adding Derivative term to the Proportional term. [12]
 - b) W.R.T parallel form, discuss the advantages offered by the Series Form of PID control. [6]

