G.R. No.

Paper Code: Ull7-101 (RE- FFSF)

DECEMBER 2017 / ENDSEM RE-EXAM

F. Y. B. TECH. (COMMON) (SEMESTER - I)

Engineering Mathematics-I (ES11171)

(2017 PATTERN) SET-B

Time: [2 Hours]

[Max. Marks: 50]

Instructions to candidates:

Q.1 is comulsory.

Answer Q.2 OR Q.3, Q.4 OR Q.5

- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required.

Q.1) a) Find the rank of matrix
$$\begin{bmatrix} 4 & 1 & 0 \\ 0 & 3 & 8 \\ 0 & 0 & 5 \end{bmatrix}$$
. [2]

b) Find A¹ for an Orthogonal matrix $A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$. [2]

c) Express given complex no. in polar form $\sqrt{2} + i$. [2]

d) By rotating vector $\overline{OA} = 1 + i\sqrt{3}$ in anticlockwise direction through an angle $\frac{\pi}{3}$, we get vector \overline{OC} , write the correct value of \overline{OC} in polar form.

e) If $y = (2x + 4)^{30}$ then find y_{30} . [2]

f) If $y = x \cdot e^{2x}$, then find y_n . [2]

g) Discuss convergence of the series $\sum_{n=1}^{\infty} \left(\frac{5}{3}\right)^n$. [2]

h) If $y = \sin^{-1}(3x - 4x^3)$, then write the series expansion for y . [2]

i) What will be the coefficient of x^5 , in series expansion of $\cos x \cosh x$? [2]

j) Find characteristic polynomial of the matrix $\begin{bmatrix} 2 & -2 & 3 \\ 3 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}$. [2]

Q 2) a) Find the value of *n* for which $v = Ae^{-gx} \sin(nt - gx)$ satisfies the partial differential equation $\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial r^2}$ where g, A are constants. [6] b) If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$, then prove that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = (1 - 4\sin^2 u)\sin 2u$. [6] c) If $x = \frac{r}{2}(e^{\theta} + e^{-\theta})$ and $y = \frac{r}{2}(e^{\theta} - e^{-\theta})$ Prove that $\left(\frac{\partial r}{\partial x}\right) = \left(\frac{\partial x}{\partial r}\right)$. [4] Q3) a) If $u = f(x^2 - y^2, y^2 - z^2, z^2 - x^2)$ then prove that $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z} = 0$. [6] b) If $x = e^u \tan v$, $y = e^u \sec v$, find the value of $\left(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}\right) \left(x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y}\right)$. c) If $u = \log(x^3 + y^3 - x^2y - y^2x)$, prove that $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = \frac{-4}{(x+y)^2}$. Q4) a) If $x = r\cos\theta$, $y = r\sin\theta$ then evaluate $J = \frac{\partial(x,y)}{\partial(r,\theta)}$ and $J' = \frac{\partial(r,\theta)}{\partial(x,y)}$. Then Verify J.J' = 1 [6] b) The H.P. required to propel a sterner varies as the cube of the velocity and square of the length. If there is 3% increase in velocity and 4% increase in length, find the % increase in H.P. [4] c) Find the points on the surface $z^2 = xy + 1$ nearest to the origin, by using Lagrange's method. [4] OR [6] b) Examine for the functionally dependent for $u = \frac{x+y}{1-xy}$, $v = \tan^{-1} x + \tan^{-1} y$. Also find the relation

Q5) a) Show that the minimum value of $xy + a^3 \left(\frac{1}{x} + \frac{1}{v} \right)$ is $3a^2$ where x > 0 and y > 0. between them if it exists. [4] c) If x+y+z=u, y+z=uv, z=uvw, show that $\frac{\partial(x,y,z)}{\partial(u,v,w)}=u^2v$. [4]

---ALL THE BEST----