Paper (ode - U117-104B (T1)

Total No. of Questions - [4]

Total No. of Printed Pages 2

G.R. No.

SEPTEMBER 2017 / IN - SEM (T1)

F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: BASIC ELECTRICAL ENGINEERING

(2017 PATTERN)

Time: [1 Hour]

[Max. Marks: 30]

- (*) Instructions to candidates:
- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q 1) a) Obtain the equations to convert three given delta connected resistances R_{12} , R_{23} and R_{31} into its equivalent star circuit with circuit diagram.

[6]

- b) State Thevenin's theorem and explain the steps to find V_{Th} , R_{eq} , and load current I_{L} . [6]
- c) Using Kirchhoff's laws, calculate current flowing through 5 Ω in given circuit. [4]

Q2) a) State and explain Kirchhoff's laws.

[6]

b) Using superposition theorem, find current flowing through 2 Ω resistance for the network shown. [6]

D-Mutanamy Old Autonomous mayal Format of guestion nanor

c) Find equivalent resistance between A and B for the network shown in the figure below. [4]

- Q3) a) A coil having resistance of 20 Ω and an inductance of 0.1 H is connected to 200 V, 50 Hz supply. Calculate:- (i) circuit current (ii) phase angle (iii) Power factor (iv) power consumed (v) voltage drop across resistance and inductance
- b) Prove that current in purely inductive circuit lags applied voltage by 90°. [4]
- c) Draw impedance triangle, write formula for impedance and phase angle and nature of p.f. for series R-C circuit. [4]

OR

- Q4) a) A series R-C circuit consisting of a resistance of 50 Ω and a capacitor of 100 μ F is connected across 230 V, 50 Hz ac supply, calculate: i) Impedance ii) Power factor iii) Current. Draw phasor diagram. [6]
- b) Define with reference to alternating quantities varying sinusoidally i) Form factor ii) Peak factor. Obtain their values for sinusoidal waveform. [4]
- c) Prove that current in purely capacitive circuit leads applied voltage by 90°.[4]

54979996025355