Total No. of Questions - [4]

Total No. of Printed Pages 2

G.R. No.	

SEPTEMBER 2017 / IN - SEM (T1)

F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: Engineering Mathematics-I

(2017 PATTERN)

Time: [1 Hour]

[Max. Marks: 30]

[4]

Instructions to candidates:

- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required

Q 1) a) Solve:
$$x + 2y + 3z = 0$$
; $x + 2y + z = 0$; $x + 5y + 4z = 0$; $x + y - 2z = 0$ [6]

b) Find the Eigen values and Eigen vectors for the matrix
$$\begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$
 [6]

c) Reduce the following matrix to Normal form and hence find its rank.

$$\begin{bmatrix} 1 & -2 & -1 & 3 \\ 3 & 4 & 0 & -1 \\ -1 & 0 & -2 & 7 \end{bmatrix}$$

OR

Q2) a) Test the following vectors for linear dependence and find a relation [6] between them if dependent (2,3,-1,-1), (1,-1,-2,-4), (3,1,3,-2), (6,3,0,-7) b) Find the Eigen values and Eigen vectors for the matrix

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 [6]

c) Reduce the following matrix to Row Echelon form and hence find its rank

$$\begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & 1 & -3 & 4 \end{bmatrix}$$
 [4]

Q3) a) If
$$|z|=1$$
, $z \ne 1$, prove that $\frac{z-1}{z+1}$ is purely imaginary. [6]

b) Using De Moivre's Theorem, Prove that
$$(1 + i\sqrt{3})^8 + (1 - i\sqrt{3})^8 = -256.$$
 [4]

c) Prove that real part of the principal value of
$$i^{\log(1+i)}$$
 is $e^{-\frac{\pi^2}{8}}\cos\left(\frac{\pi}{4}\log 2\right)$. [4]

OR

Q4) a) Solve the equation
$$x^7 + x^4 - x^3 - 1 = 0$$
. [6]

b) If
$$\cos ec\left(\frac{\pi}{4}+ix\right)=u+iv$$
, then prove that $\left(u^2+v^2\right)^2=2\left(u^2-v^2\right)$. [4]

c) Prove that
$$\cos[ilog(\frac{a+ib}{a-ib})] = \frac{a^2-b^2}{a^2+b^2}$$
. [4]