01 M

G.R. No.

OCTOBER 2017 / IN - SEM (T2)

F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: BASIC ELECTRICAL ENGINEERING

(2017 PATTERN)

Solution and scheme of marking

Time: [1 Hour] [Max. Marks: 30]

- (*) Instructions to candidates:
- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4
- 2) Figures to the right indicate full marks.
- Q 1) a) Phasor diagram (any one line current/ all three line currents) 03M Derivation steps for relation between line and phase current with correct relation 02M $I_L = \sqrt{3} \ I_{ph}$ 01M
 - b) Derivation step of active power consumed by delta connected load in terms of line quantities 01M $P_{active} = \sqrt{3} V_L I_L \cos \Phi_{ph}$ 01M

 Derivation step of reactive power consumed by delta connected load in terms of line quantities 01M $P_{matter} = \sqrt{3} V_L I_L \sin \Phi_{ph}$ 01M

Decernity O: Autonomy Old Autonomous - maral Formats-format of question paper

Preactive = 9.6 kVAr

Q4)	a) Note on autotransformer	
	Circuit diagram (for step up or step down) with proper notation	
	of currents and voltages and primary and secondary sides	02M
	Advantages of autotransformer Any two	02M
	Disadvantages of autotransformer Any one	01M
	Application of autotransformer Any one	01M
	b) $E_1 = V_1 = 500 \text{ V}$	
	$N_1 = 500 N_2 = 1200$	
	$a_c = 80 \text{ cm}^2 = 80 \text{ X } 10^{-4} \text{ m}^2$ $f = 50 \text{ Hz}$	
	$E_1 = 4.44 \text{ f} \otimes_m N_1 = 4.44 \text{ f} B_m a_c N_1 B_m = E_1 / 4.44 \text{ f} a_c N_1$	
580	$B_{\rm m}$ = 0.5630 Wb	02M
	$E_2 = 4.44 \text{ f B}_{\text{m}} a_{\text{c}} N_2 = 1199.86 = 1200 \text{ V}$	02M
	c) KVA rating = 5	
	$I_1 = 5000/500 = 10 \text{ A}$	01M

c) KVA rating = 5	
$I_1 = 5000/500 = 10 \text{ A}$	01M
$I_2 = 5000/1200 = 4.166 \text{ A}$	01M
$a_c = 80 \text{ cm}^2 = 80 \text{ X } 10^{-4} \text{ m}^2$ $f = 60 \text{ Hz}$	z
$E_1 = V_1 = 500 \text{ V}$	
$E_1 = 4.44 \text{ f} \text{ Ø}_m \text{N}_1 = 4.44 \text{ f B}_m \text{ a}_c \text{ N}_1$ Therefo	ore, $B_m = E_1 / 4.44 \text{ f a}_c N_1$
$B_{\rm m} = 0.4692 \; {\rm Wb}$	02M