G.R. No.

Paper Code - U117-104 B(T2)

October SEPTEMBER 2017 / IN - SEM (T2)

F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: BASIC ELECTRICAL ENGINEERING

(2017 PATTERN)

Time: [1 Hour] [Max. Marks: 30]

- (*) Instructions to candidates:
- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4
- Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required
- Q 1) a) Derive with the help of a neat phasor diagram an expression showing the relationship between line current and phase current for a three phase balanced delta connected load which has a lagging power factor and connected across a symmetrical three phase a.c. supply. [6]
- b) Derive an expression for total active and reactive power consumed by a three phase balanced delta connected load in terms of line quantities. [4]
- c) A balanced star connected load of $(8 + j6) \Omega$ per phase is connected to a balanced 3 phase 400-V supply. Find the line voltage, line current, phase voltage, power factor, total active and reactive power. [6]

OR

Q2) a) Draw a neat connection and phasor diagram for a three phase balanced star connected resistive load of resistance R in each phase across a symmetrical three phase a.c. supply. Mark the line currents, line voltages, phase voltages and phase currents on the connection as well as phasor diagram.

page 1/2

b) A balanced delta connected load of (8 + j6) Ω per phase is connected to a
balanced 3 phase, 400 V, 50 Hz ac supply. Find the line current, phase
current, phase voltage, power factor, total active and reactive power. [6]
c) If two wattmeters are connected for measuring power for delta connected
load as given in Q.2(b) with one of the watt-meter readings as 27.51 kW, find
the reading on the other wattmeter. Also find the power factor angle. [4]
Q3) a) Derive an expression for rms value of emf induced in primary and
secondary winding of a transformer with N_1 and N_2 as number of turns on
primary and secondary windings and connected across a single phase ac
supply of frequency f. [6]
b) A 600 KVA transformer has iron losses of 4 kW and full load copper losses
are 8 kW. Calculate the efficiency of transformer at i) half load ii) full load with
0.8 p.f. lagging. [4]
c) If the transformer as given in Q.3(b) has voltage rating of 3300/440 V.
Calculate its full load current on primary and secondary side. If primary is
connected to 3300 V, 50 Hz ac supply, calculate maximum flux in the
core if the primary winding has 1000 turns. [4]
OR
Q4) a) Write a note on autotransformer pertaining to following points:
i. Circuit diagram ii. Advantages iii. Disadvantages iv. Applications [6]
b) A single phase transformer has 500 and 1200 turns respectively on its primary and secondary. Cross sectional area of core is 80 cm ² . If primary is
connected to 500 V, 50 Hz ac supply, calculate e.m.f. induced in secondary and maximum flux density in the core. [4]
c) Find the full load current in primary and secondary windings of the

transformer as given in Q.4(b) if its rating is 5 KVA. If the primary winding is connected to 500~V, 60~Hz ac supply with cross sectional area of core as 80~

page 2/2

cm², calculate maximum flux density in the core.